File size: 9,984 Bytes
588ce8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e8b98f
588ce8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e8b98f
588ce8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
690e199
 
588ce8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import numpy as np
import matplotlib.pyplot as plt


def get_top_predictions(prediction = None, threshold = 0.7):
    if prediction is None:
        return None, None
    else:
        sorted_scores_ids = prediction.pred_instances.scores.argsort()[::-1]
        sorted_scores = prediction.pred_instances.scores[sorted_scores_ids]
        sorted_predictions = prediction.pred_instances.labels[sorted_scores_ids]
        return {'pred_above_thresh': sorted_predictions[sorted_scores > threshold], 
                'pred_above_thresh_id': sorted_scores_ids[sorted_scores > threshold],
                'pred_above_thresh_scores': sorted_scores[sorted_scores > threshold],
                'pred_above_thresh_bboxes': prediction.pred_instances['bboxes'][sorted_scores_ids][sorted_scores > threshold]}
    
def add_class_labels(top_pred = {}, class_labels = None):
    if class_labels == None:
        print('No class labels provided, returning original dictionary')
        return top_pred
    else:
        top_pred['pred_above_thresh_labels'] = [class_labels[x].lower() for x in top_pred['pred_above_thresh']]
        top_pred['any_detection'] = len(top_pred['pred_above_thresh_labels']) > 0
        if top_pred['any_detection']:
            # Get shark / human / unknown vectors
            top_pred['is_shark'] = np.array([1 if 'shark' in x else 0 for x in top_pred['pred_above_thresh_labels']])
            top_pred['is_human'] = np.array([1 if 'person' in x else 1 if 'surfer' in x else 0 for x in top_pred['pred_above_thresh_labels']])
            top_pred['is_unknown'] = np.array([1 if 'unidentifiable' in x else 0 for x in top_pred['pred_above_thresh_labels']])
            # Get shark / human / unknown  numbers of detections
            top_pred['shark_n'] = np.sum(top_pred['is_shark'])
            top_pred['human_n'] = np.sum(top_pred['is_human'])
            top_pred['unknown_n'] = np.sum(top_pred['is_unknown'])
        else:
            # Get shark / human / unknown vectors
            top_pred['is_shark'] = None
            top_pred['is_human'] = None
            top_pred['is_unknown'] = None
            # Get shark / human / unknown  numbers of detections
            top_pred['shark_n'] = 0
            top_pred['human_n'] = 0
            top_pred['unknown_n'] = 0
        return top_pred

def add_class_sizes(top_pred = {}, class_sizes = None):
    size_list = []
    shark_size_list = []
    if top_pred['any_detection']:
        for tmp_pred in top_pred['pred_above_thresh_labels']:
                tmp_class_sizes = class_sizes[tmp_pred.lower()]
                if tmp_class_sizes == None:
                    size_list.append(None)
                    continue 
                else:
                    size_list.append(tmp_class_sizes['feet'])

                if 'shark' in tmp_pred.lower():
                    shark_size_list.append(np.mean(tmp_class_sizes['feet']))

        top_pred['pred_above_thresh_sizes'] = size_list

        if top_pred['shark_n'] > 0:
            top_pred['biggest_shark_size'] = np.max(shark_size_list)
        else:
            top_pred['biggest_shark_size'] = None
    else:
        top_pred['pred_above_thresh_sizes'] = None
        top_pred['biggest_shark_size'] = None
    return top_pred

def add_class_weights(top_pred = {}, class_weights = None):
    weight_list = []
    shark_weight_list = []
    if top_pred['any_detection']:
        for tmp_pred in top_pred['pred_above_thresh_labels']:
                tmp_class_weights = class_weights[tmp_pred.lower()]
                if tmp_class_weights == None:
                    weight_list.append(None)
                    continue
                else:
                    weight_list.append(tmp_class_weights['pounds'])

                if 'shark' in tmp_pred.lower():
                    shark_weight_list.append(np.mean(tmp_class_weights['pounds']))

        top_pred['pred_above_thresh_weights'] = weight_list

        if top_pred['shark_n'] > 0:
            top_pred['biggest_shark_weight'] = np.max(shark_weight_list)
        else:
            top_pred['biggest_shark_weight'] = None
    else:
        top_pred['pred_above_thresh_weights'] = None
        top_pred['biggest_shark_weight'] = None
    return top_pred

# Sizes
def get_min_distance_shark_person(top_pred, class_sizes = None, dangerous_distance = 100):
    min_dist = 99999
    dist_calculated = False
    # Calculate distance for every pairing of human and shark
    # and accumulate the min distance
    for i, tmp_shark in enumerate(top_pred['is_shark']):
        for j, tmp_person in enumerate(top_pred['is_human']):
            if tmp_shark == 1 and tmp_person == 1:
                dist_calculated = True
                #print(top_pred['pred_above_thresh_bboxes'][i])
                #print(top_pred['pred_above_thresh_bboxes'][j])
                tmp_dist_feed = _calculate_dist_estimate(top_pred['pred_above_thresh_bboxes'][i], 
                                                         top_pred['pred_above_thresh_bboxes'][j], 
                                                         [top_pred['pred_above_thresh_labels'][i], top_pred['pred_above_thresh_labels'][j]],
                                                         class_sizes,
                                                         measurement = 'feet')
                #print(tmp_dist_feed)
                min_dist = min(min_dist, tmp_dist_feed)
            else:
                pass
    return {'min_dist': str(round(min_dist,1)) + ' feet' if dist_calculated else '', 
            'any_dist_calculated': dist_calculated, 
            'dangerous_dist': min_dist < dangerous_distance}

def _calculate_dist_estimate(bbox1, bbox2, labels, class_sizes = None, measurement = 'feet'):
    if class_sizes[labels[0]] == None or class_sizes[labels[1]] == None:
        return 9999
    class_feet_size_mean = np.array([class_sizes[labels[0]][measurement][0], 
                                     class_sizes[labels[1]][measurement][0]]).mean()
    box_pixel_size_mean = np.array([np.linalg.norm(bbox1[[0, 1]] - bbox1[[2, 3]]), 
                                    np.linalg.norm(bbox2[[0, 1]] - bbox2[[2, 3]])]).mean()
    
    # Calculate the max size of the two boxes
    box_center_1 = np.array([(bbox1[2] - bbox1[0])/2 + bbox1[0], 
                             (bbox1[3] - bbox1[1])/2 + bbox1[1]])
    box_center_2 = np.array([(bbox2[2] - bbox2[0])/2 + bbox2[0], 
                             (bbox2[3] - bbox2[1])/2 + bbox2[1]])
    
    # Return ratio distance
    return np.linalg.norm(box_center_1 - box_center_2) / box_pixel_size_mean * class_feet_size_mean

# bboxes info!
# 1 x1 (left, lower pixel number)
# 2 y1 (top , lower pixel number)
# 3 x2 (right, higher pixel number)
# 4 y2 (bottom, higher pixel number)

def process_results_for_plot(predictions = None, threshold = 0.5, classes = None,
                             class_sizes = None, dangerous_distance = 100):
    
    top_pred = get_top_predictions(predictions, threshold = threshold)
    top_pred = add_class_labels(top_pred, class_labels = classes)
    top_pred = add_class_sizes(top_pred, class_sizes = class_sizes)
    top_pred = add_class_weights(top_pred, class_weights = class_sizes)
    
    if len(top_pred['pred_above_thresh']) > 0:
        min_dist = get_min_distance_shark_person(top_pred, class_sizes = class_sizes)
    else:
        min_dist = {'any_dist_calculated': False,
                    'min_dist': '',
                    'dangerous_dist': False}

    return {'min_dist_str': min_dist['min_dist'], 
            'shark_sighted': top_pred['shark_n'] > 0,
            'human_sighted': top_pred['human_n'] > 0,
            'shark_n': top_pred['shark_n'],
            'human_n': top_pred['human_n'],
            'human_and_shark': (top_pred['shark_n'] > 0) and (top_pred['human_n'] > 0),
            'dangerous_dist': min_dist['dangerous_dist'],
            'dist_calculated': min_dist['any_dist_calculated'],
            'biggest_shark_size': '' if top_pred['biggest_shark_size'] == None else str(round(top_pred['biggest_shark_size'],1)) + ' feet',
            'biggest_shark_weight': '' if top_pred['biggest_shark_weight'] == None else str(round(top_pred['biggest_shark_weight'],1)) + ' pounds',
            }

def prediction_dashboard(top_pred = None):
    # Bullet points:
    shark_sighted = 'Shark Detected: ' + str(top_pred['shark_sighted'])
    human_sighted = 'Number of Humans: ' + str(top_pred['human_n'])

    shark_size_estimate = 'Biggest shark size: ' + str(top_pred['biggest_shark_size'])
    shark_weight_estimate = 'Biggest shark weight: ' + str(top_pred['biggest_shark_weight'])

    danger_level = 'Danger Level: ' 
    danger_level += 'High' if top_pred['dangerous_dist'] else 'Low'

    danger_color = 'orangered' if top_pred['dangerous_dist'] else 'yellowgreen'

    # Create a list of strings to plot
    strings = [shark_sighted, human_sighted, shark_size_estimate, shark_weight_estimate, danger_level]

    # Create a figure and axis
    fig, ax = plt.subplots()
    fig.set_facecolor((35/255,40/255,54/255))

    # Hide axes
    ax.axis('off')

    # Position for starting to place text, starting from top
    y_pos = 0.7

    # Iterate through list and place each item as text on the plot
    for s in strings:
        if 'danger' in s.lower():
            ax.text(0.05, y_pos, s, transform=ax.transAxes, fontsize=16, color=danger_color)
        else:
            ax.text(0.05, y_pos, s, transform=ax.transAxes, fontsize=16, color=(0, 204/255, 153/255))
        y_pos -= 0.1  # move down for next item

    # plt.tight_layout()
    # If we haven't already shown or saved the plot, then we need to
    # draw the figure first...
    fig.canvas.draw();

    # Now we can save it to a numpy array.
    data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
    data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
    plt.close()
    #plt.savefig('tmp.png', format='png')
    return data #plt.show()