Spaces:
Runtime error
Runtime error
File size: 6,838 Bytes
8c6ecf8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import gradio as gr
import os
import subprocess
from huggingface_hub import snapshot_download
REPO_ID='SharkSpace/videos_examples'
snapshot_download(repo_id=REPO_ID, token=os.environ.get('SHARK_MODEL'),repo_type='dataset',local_dir='videos_example')
if os.getenv('SYSTEM') == 'spaces':
subprocess.call('pip install -U openmim'.split())
subprocess.call('pip install python-dotenv'.split())
subprocess.call('pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113'.split())
subprocess.call('mim install mmcv>=2.0.0'.split())
subprocess.call('mim install mmengine'.split())
subprocess.call('mim install mmdet'.split())
subprocess.call('pip install opencv-python-headless==4.5.5.64'.split())
subprocess.call('pip install git+https://github.com/cocodataset/panopticapi.git'.split())
import cv2
import dotenv
dotenv.load_dotenv()
import numpy as np
import gradio as gr
import glob
from inference import inference_frame,inference_frame_serial
from inference import inference_frame_par_ready
from inference import process_frame
import os
import pathlib
import multiprocessing as mp
from time import time
def analize_video_serial(x):
print(x)
path = '/tmp/test/'
os.makedirs(path, exist_ok=True)
videos = len(os.listdir(path))
path = f'{path}{videos}'
os.makedirs(path, exist_ok=True)
outname = f'{path}_processed.mp4'
if os.path.exists(outname):
print('video already processed')
return outname
cap = cv2.VideoCapture(x)
counter = 0
import pdb;pdb.set_trace()
while(cap.isOpened()):
ret, frame = cap.read()
yield None, frame
if ret==True:
name = os.path.join(path,f'{counter:05d}.png')
frame = inference_frame_serial(frame)
# write the flipped frame
cv2.imwrite(name, frame)
counter +=1
#yield None,frame
else:
break
# Release everything if job is finished
print(path)
os.system(f'''ffmpeg -framerate 20 -pattern_type glob -i '{path}/*.png' -c:v libx264 -pix_fmt yuv420p {outname} -y''')
return outname,frame
def analyze_video_parallel(x, skip_frames = 5,
frame_rate_out = 8, batch_size = 16):
print(x)
#Define path to saved images
path = '/tmp/test/'
os.makedirs(path, exist_ok=True)
# Define name of current video as number of videos in path
n_videos_in_path = len(os.listdir(path))
path = f'{path}{n_videos_in_path}'
os.makedirs(path, exist_ok=True)
# Define name of output video
outname = f'{path}_processed.mp4'
if os.path.exists(outname):
print('video already processed')
return outname
cap = cv2.VideoCapture(x)
counter = 0
pred_results_all = []
frames_all = []
while(cap.isOpened()):
frames = []
#start = time()
while len(frames) < batch_size:
#start = time()
ret, frame = cap.read()
if ret == False:
break
elif counter % skip_frames == 0:
frames.append(frame)
counter += 1
#print(f'read time: {time()-start}')
frames_all.extend(frames)
# Get timing for inference
start = time()
print('len frames passed: ', len(frames))
if len(frames) > 0:
pred_results = inference_frame_par_ready(frames)
print(f'inference time: {time()-start}')
pred_results_all.extend(pred_results)
# break while loop when return of the image reader is False
if ret == False:
break
print('exited prediction loop')
# Release everything if job is finished
cap.release()
start = time()
pool = mp.Pool(mp.cpu_count()-2)
pool_out = pool.map(process_frame,
list(zip(pred_results_all,
frames_all,
[i for i in range(len(pred_results_all))])))
pool.close()
print(f'pool time: {time()-start}')
start = time()
counter = 0
for pool_out_tmp in pool_out:
name = os.path.join(path,f'{counter:05d}.png')
cv2.imwrite(name, pool_out_tmp)
counter +=1
yield None,pool_out_tmp
print(f'write time: {time()-start}')
# Create video from predicted images
print(path)
os.system(f'''ffmpeg -framerate {frame_rate_out} -pattern_type glob -i '{path}/*.png' -c:v libx264 -pix_fmt yuv420p {outname} -y''')
return outname, pool_out_tmp
def set_example_image(example: list) -> dict:
return gr.Video.update(value=example[0])
def show_video(example: list) -> dict:
return gr.Video.update(value=example[0])
with gr.Blocks(title='Shark Patrol',theme=gr.themes.Soft(),live=True,) as demo:
gr.Markdown("Alpha Demo of the Sharkpatrol Oceanlife Detector.")
with gr.Tab("Preloaded Examples"):
with gr.Row():
video_example = gr.Video(source='upload',include_audio=False,stream=True)
with gr.Row():
paths = sorted(pathlib.Path('videos_example/').rglob('*rgb.mp4'))
example_preds = gr.Dataset(components=[video_example],
samples=[[path.as_posix()]
for path in paths])
example_preds.click(fn=show_video,
inputs=example_preds,
outputs=video_example)
with gr.Tab("Test your own Video"):
with gr.Row():
video_input = gr.Video(source='upload',include_audio=False)
#video_input.style(witdh='50%',height='50%')
image_temp = gr.Image()
with gr.Row():
video_output = gr.Video()
#video_output.style(witdh='50%',height='50%')
video_button = gr.Button("Analyze your Video")
with gr.Row():
paths = sorted(pathlib.Path('videos_example/').rglob('*.mp4'))
example_images = gr.Dataset(components=[video_input],
samples=[[path.as_posix()]
for path in paths if 'raw_videos' in str(path)])
video_button.click(analize_video_serial, inputs=video_input, outputs=[video_output,image_temp])
example_images.click(fn=set_example_image,
inputs=example_images,
outputs=video_input)
demo.queue()
if os.getenv('SYSTEM') == 'spaces':
demo.launch(width='40%',auth=(os.environ.get('SHARK_USERNAME'), os.environ.get('SHARK_PASSWORD')))
else:
demo.launch()
|