Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
import subprocess | |
if os.getenv('SYSTEM') == 'spaces': | |
subprocess.call('pip install -U openmim'.split()) | |
subprocess.call('pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113'.split()) | |
subprocess.call('mim install mmcv>=2.0.0'.split()) | |
subprocess.call('mim install mmengine'.split()) | |
subprocess.call('mim install mmdet'.split()) | |
subprocess.call('pip install opencv-python-headless==4.5.5.64'.split()) | |
subprocess.call('pip install git+https://github.com/cocodataset/panopticapi.git'.split()) | |
import cv2 | |
import numpy as np | |
import gradio as gr | |
from inference import inference_frame | |
import os | |
def analize_video(x): | |
cap = cv2.VideoCapture(x) | |
path = '/tmp/test/' | |
os.makedirs(path, exist_ok=True) | |
videos = len(os.listdir(path)) | |
path = f'{path}{videos}' | |
os.makedirs(path, exist_ok=True) | |
outname = f'{path}_processed.mp4' | |
#out = cv2.VideoWriter(outname,cv2.VideoWriter_fourcc(*'h264'), 20.0, (640,480)) | |
counter = 0 | |
while(cap.isOpened()): | |
ret, frame = cap.read() | |
if ret==True: | |
name = os.path.join(path,f'{counter:05d}.png') | |
frame = inference_frame(frame) | |
# write the flipped frame | |
cv2.imwrite(name, frame) | |
counter +=1 | |
else: | |
break | |
# Release everything if job is finished | |
print(path) | |
os.system(f'''ffmpeg -framerate 20 -pattern_type glob -i '{path}/*.png' -c:v libx264 -pix_fmt yuv420p {outname}''') | |
return outname | |
with gr.Blocks(title='Shark Patrol',theme=gr.themes.Soft(),live=True,) as demo: | |
gr.Markdown("Initial DEMO.") | |
with gr.Tab("Shark Detector"): | |
with gr.Row(): | |
video_input = gr.Video(source='upload',include_audio=False) | |
#video_input.style(witdh='50%',height='50%') | |
video_output = gr.Video() | |
#video_output.style(witdh='50%',height='50%') | |
video_button = gr.Button("Analyze") | |
with gr.Accordion("Open for More!"): | |
gr.Markdown("Place holder for detection") | |
video_button.click(analize_video, inputs=video_input, outputs=video_output) | |
demo.queue() | |
demo.launch(width='40%',auth=(os.environ.get('SHARK_USERNAME'), os.environ.get('SHARK_PASSWORD'))) |