Spaces:
Runtime error
Runtime error
Ivan Felipe Rodriguez
commited on
Commit
•
021ea63
1
Parent(s):
5636b5c
testing new app for realtime pred
Browse files- app.py +36 -55
- app3.py +79 -0
- inference.py +15 -5
app.py
CHANGED
@@ -6,7 +6,7 @@ from huggingface_hub import snapshot_download
|
|
6 |
|
7 |
|
8 |
REPO_ID='SharkSpace/videos_examples'
|
9 |
-
snapshot_download(repo_id=REPO_ID, token=
|
10 |
|
11 |
|
12 |
if os.getenv('SYSTEM') == 'spaces':
|
@@ -27,7 +27,7 @@ dotenv.load_dotenv()
|
|
27 |
import numpy as np
|
28 |
import gradio as gr
|
29 |
import glob
|
30 |
-
from inference import inference_frame
|
31 |
from inference import inference_frame_par_ready
|
32 |
from inference import process_frame
|
33 |
import os
|
@@ -36,69 +36,42 @@ import multiprocessing as mp
|
|
36 |
|
37 |
from time import time
|
38 |
|
39 |
-
def analyze_video(x, skip_frames = 5, frame_rate_out = 8):
|
40 |
-
print(x)
|
41 |
|
42 |
-
|
43 |
-
|
|
|
44 |
os.makedirs(path, exist_ok=True)
|
45 |
-
|
46 |
-
|
47 |
-
n_videos_in_path = len(os.listdir(path))
|
48 |
-
path = f'{path}{n_videos_in_path}'
|
49 |
os.makedirs(path, exist_ok=True)
|
50 |
-
|
51 |
-
# Define name of output video
|
52 |
outname = f'{path}_processed.mp4'
|
53 |
-
|
54 |
if os.path.exists(outname):
|
55 |
print('video already processed')
|
56 |
return outname
|
57 |
-
|
58 |
cap = cv2.VideoCapture(x)
|
59 |
counter = 0
|
60 |
-
|
61 |
while(cap.isOpened()):
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
start = time()
|
66 |
-
ret, frame = cap.read()
|
67 |
-
frames.append(frame)
|
68 |
-
if ret == False:
|
69 |
-
break
|
70 |
-
print(f'read time: {time()-start}')
|
71 |
-
|
72 |
-
#if ret==True:
|
73 |
-
|
74 |
-
#if counter % skip_frames == 0:
|
75 |
-
name = os.path.join(path,f'{counter:05d}.png')
|
76 |
-
# Get timing for inference
|
77 |
-
start = time()
|
78 |
-
frames = inference_frame(frames)
|
79 |
-
print(f'inference time: {time()-start}')
|
80 |
-
# write the flipped frame
|
81 |
-
|
82 |
-
start = time()
|
83 |
-
for frame in frames:
|
84 |
name = os.path.join(path,f'{counter:05d}.png')
|
|
|
|
|
|
|
85 |
cv2.imwrite(name, frame)
|
86 |
counter +=1
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
# counter +=1
|
92 |
-
# else:
|
93 |
-
# break
|
94 |
-
|
95 |
# Release everything if job is finished
|
96 |
-
cap.release()
|
97 |
-
|
98 |
-
# Create video from predicted images
|
99 |
print(path)
|
100 |
-
os.system(f'''ffmpeg -framerate
|
101 |
-
return outname
|
|
|
|
|
|
|
102 |
|
103 |
|
104 |
def analyze_video_parallel(x, skip_frames = 5,
|
@@ -174,12 +147,14 @@ def analyze_video_parallel(x, skip_frames = 5,
|
|
174 |
name = os.path.join(path,f'{counter:05d}.png')
|
175 |
cv2.imwrite(name, pool_out_tmp)
|
176 |
counter +=1
|
|
|
|
|
177 |
print(f'write time: {time()-start}')
|
178 |
|
179 |
# Create video from predicted images
|
180 |
print(path)
|
181 |
os.system(f'''ffmpeg -framerate {frame_rate_out} -pattern_type glob -i '{path}/*.png' -c:v libx264 -pix_fmt yuv420p {outname} -y''')
|
182 |
-
return outname
|
183 |
|
184 |
|
185 |
def set_example_image(example: list) -> dict:
|
@@ -207,7 +182,10 @@ with gr.Blocks(title='Shark Patrol',theme=gr.themes.Soft(),live=True,) as demo:
|
|
207 |
with gr.Row():
|
208 |
video_input = gr.Video(source='upload',include_audio=False)
|
209 |
#video_input.style(witdh='50%',height='50%')
|
|
|
|
|
210 |
video_output = gr.Video()
|
|
|
211 |
#video_output.style(witdh='50%',height='50%')
|
212 |
|
213 |
video_button = gr.Button("Analyze your Video")
|
@@ -215,14 +193,17 @@ with gr.Blocks(title='Shark Patrol',theme=gr.themes.Soft(),live=True,) as demo:
|
|
215 |
paths = sorted(pathlib.Path('videos_example/').rglob('*.mp4'))
|
216 |
example_images = gr.Dataset(components=[video_input],
|
217 |
samples=[[path.as_posix()]
|
218 |
-
for path in paths if '
|
219 |
|
220 |
-
video_button.click(
|
221 |
|
222 |
example_images.click(fn=set_example_image,
|
223 |
inputs=example_images,
|
224 |
outputs=video_input)
|
225 |
|
|
|
226 |
demo.queue()
|
227 |
-
|
228 |
-
demo.launch(width='40%',auth=(os.environ.get('SHARK_USERNAME'), os.environ.get('SHARK_PASSWORD')))
|
|
|
|
|
|
6 |
|
7 |
|
8 |
REPO_ID='SharkSpace/videos_examples'
|
9 |
+
snapshot_download(repo_id=REPO_ID, token=os.environ.get('SHARK_MODEL'),repo_type='dataset',local_dir='videos_example')
|
10 |
|
11 |
|
12 |
if os.getenv('SYSTEM') == 'spaces':
|
|
|
27 |
import numpy as np
|
28 |
import gradio as gr
|
29 |
import glob
|
30 |
+
from inference import inference_frame,inference_frame_serial
|
31 |
from inference import inference_frame_par_ready
|
32 |
from inference import process_frame
|
33 |
import os
|
|
|
36 |
|
37 |
from time import time
|
38 |
|
|
|
|
|
39 |
|
40 |
+
def analize_video_serial(x):
|
41 |
+
print(x)
|
42 |
+
path = '/tmp/test/'
|
43 |
os.makedirs(path, exist_ok=True)
|
44 |
+
videos = len(os.listdir(path))
|
45 |
+
path = f'{path}{videos}'
|
|
|
|
|
46 |
os.makedirs(path, exist_ok=True)
|
|
|
|
|
47 |
outname = f'{path}_processed.mp4'
|
|
|
48 |
if os.path.exists(outname):
|
49 |
print('video already processed')
|
50 |
return outname
|
|
|
51 |
cap = cv2.VideoCapture(x)
|
52 |
counter = 0
|
53 |
+
import pdb;pdb.set_trace()
|
54 |
while(cap.isOpened()):
|
55 |
+
ret, frame = cap.read()
|
56 |
+
yield None, frame
|
57 |
+
if ret==True:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
name = os.path.join(path,f'{counter:05d}.png')
|
59 |
+
frame = inference_frame_serial(frame)
|
60 |
+
# write the flipped frame
|
61 |
+
|
62 |
cv2.imwrite(name, frame)
|
63 |
counter +=1
|
64 |
+
|
65 |
+
#yield None,frame
|
66 |
+
else:
|
67 |
+
break
|
|
|
|
|
|
|
|
|
68 |
# Release everything if job is finished
|
|
|
|
|
|
|
69 |
print(path)
|
70 |
+
os.system(f'''ffmpeg -framerate 20 -pattern_type glob -i '{path}/*.png' -c:v libx264 -pix_fmt yuv420p {outname} -y''')
|
71 |
+
return outname,frame
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
|
76 |
|
77 |
def analyze_video_parallel(x, skip_frames = 5,
|
|
|
147 |
name = os.path.join(path,f'{counter:05d}.png')
|
148 |
cv2.imwrite(name, pool_out_tmp)
|
149 |
counter +=1
|
150 |
+
yield None,pool_out_tmp
|
151 |
+
|
152 |
print(f'write time: {time()-start}')
|
153 |
|
154 |
# Create video from predicted images
|
155 |
print(path)
|
156 |
os.system(f'''ffmpeg -framerate {frame_rate_out} -pattern_type glob -i '{path}/*.png' -c:v libx264 -pix_fmt yuv420p {outname} -y''')
|
157 |
+
return outname, pool_out_tmp
|
158 |
|
159 |
|
160 |
def set_example_image(example: list) -> dict:
|
|
|
182 |
with gr.Row():
|
183 |
video_input = gr.Video(source='upload',include_audio=False)
|
184 |
#video_input.style(witdh='50%',height='50%')
|
185 |
+
image_temp = gr.Image()
|
186 |
+
with gr.Row():
|
187 |
video_output = gr.Video()
|
188 |
+
|
189 |
#video_output.style(witdh='50%',height='50%')
|
190 |
|
191 |
video_button = gr.Button("Analyze your Video")
|
|
|
193 |
paths = sorted(pathlib.Path('videos_example/').rglob('*.mp4'))
|
194 |
example_images = gr.Dataset(components=[video_input],
|
195 |
samples=[[path.as_posix()]
|
196 |
+
for path in paths if 'raw_videos' in str(path)])
|
197 |
|
198 |
+
video_button.click(analize_video_serial, inputs=video_input, outputs=[video_output,image_temp])
|
199 |
|
200 |
example_images.click(fn=set_example_image,
|
201 |
inputs=example_images,
|
202 |
outputs=video_input)
|
203 |
|
204 |
+
|
205 |
demo.queue()
|
206 |
+
if os.getenv('SYSTEM') == 'spaces':
|
207 |
+
demo.launch(width='40%',auth=(os.environ.get('SHARK_USERNAME'), os.environ.get('SHARK_PASSWORD')))
|
208 |
+
else:
|
209 |
+
demo.launch()
|
app3.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import subprocess
|
3 |
+
import os
|
4 |
+
if os.getenv('SYSTEM') == 'spaces':
|
5 |
+
|
6 |
+
subprocess.call('pip install -U openmim'.split())
|
7 |
+
subprocess.call('pip install python-dotenv'.split())
|
8 |
+
subprocess.call('pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113'.split())
|
9 |
+
subprocess.call('mim install mmcv>=2.0.0'.split())
|
10 |
+
subprocess.call('mim install mmengine'.split())
|
11 |
+
subprocess.call('mim install mmdet'.split())
|
12 |
+
subprocess.call('pip install opencv-python-headless==4.5.5.64'.split())
|
13 |
+
subprocess.call('pip install git+https://github.com/cocodataset/panopticapi.git'.split())
|
14 |
+
|
15 |
+
import gradio as gr
|
16 |
+
|
17 |
+
from huggingface_hub import snapshot_download
|
18 |
+
import cv2
|
19 |
+
import dotenv
|
20 |
+
dotenv.load_dotenv()
|
21 |
+
import numpy as np
|
22 |
+
import gradio as gr
|
23 |
+
import glob
|
24 |
+
from inference import inference_frame,inference_frame_serial
|
25 |
+
from inference import inference_frame_par_ready
|
26 |
+
from inference import process_frame
|
27 |
+
import os
|
28 |
+
import pathlib
|
29 |
+
import multiprocessing as mp
|
30 |
+
from time import time
|
31 |
+
|
32 |
+
|
33 |
+
REPO_ID='SharkSpace/videos_examples'
|
34 |
+
snapshot_download(repo_id=REPO_ID, token=os.environ.get('SHARK_MODEL'),repo_type='dataset',local_dir='videos_example')
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
def process_video(input_video):
|
43 |
+
cap = cv2.VideoCapture(input_video)
|
44 |
+
|
45 |
+
output_path = "output.mp4"
|
46 |
+
|
47 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
48 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
49 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
50 |
+
|
51 |
+
video = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height))
|
52 |
+
|
53 |
+
iterating, frame = cap.read()
|
54 |
+
while iterating:
|
55 |
+
# flip frame vertically
|
56 |
+
display_frame = inference_frame_serial(frame)
|
57 |
+
video.write(frame)
|
58 |
+
yield display_frame, None
|
59 |
+
iterating, frame = cap.read()
|
60 |
+
|
61 |
+
video.release()
|
62 |
+
yield display_frame, output_path
|
63 |
+
|
64 |
+
with gr.Blocks() as demo:
|
65 |
+
with gr.Row():
|
66 |
+
input_video = gr.Video(label="input")
|
67 |
+
processed_frames = gr.Image(label="last frame")
|
68 |
+
output_video = gr.Video(label="output")
|
69 |
+
|
70 |
+
with gr.Row():
|
71 |
+
paths = sorted(pathlib.Path('videos_example/').rglob('*.mp4'))
|
72 |
+
samples=[[path.as_posix()] for path in paths if 'raw_videos' in str(path)]
|
73 |
+
examples = gr.Examples(samples, inputs=input_video)
|
74 |
+
process_video_btn = gr.Button("process video")
|
75 |
+
|
76 |
+
process_video_btn.click(process_video, input_video, [processed_frames, output_video])
|
77 |
+
|
78 |
+
demo.queue()
|
79 |
+
demo.launch()
|
inference.py
CHANGED
@@ -80,7 +80,7 @@ classes= ['Beach',
|
|
80 |
REPO_ID = "SharkSpace/maskformer_model"
|
81 |
FILENAME = "mask2former"
|
82 |
|
83 |
-
|
84 |
|
85 |
|
86 |
|
@@ -105,12 +105,23 @@ print(dir(visualizer))
|
|
105 |
# the dataset_meta is loaded from the checkpoint and
|
106 |
# then pass to the model in init_detector
|
107 |
visualizer.dataset_meta = model.dataset_meta
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
def inference_frame(image):
|
110 |
-
#import ipdb; ipdb.set_trace()
|
111 |
result = inference_detector(model, image)
|
112 |
# show the results
|
113 |
-
#import ipdb; ipdb.set_trace()
|
114 |
frames = []
|
115 |
cnt=0
|
116 |
|
@@ -127,8 +138,7 @@ def inference_frame(image):
|
|
127 |
cnt+=1
|
128 |
|
129 |
#frames = process_frames(result, image, visualizer)
|
130 |
-
|
131 |
-
print("Time taken for drawing: ", end-start)
|
132 |
return frames
|
133 |
|
134 |
def inference_frame_par_ready(image):
|
|
|
80 |
REPO_ID = "SharkSpace/maskformer_model"
|
81 |
FILENAME = "mask2former"
|
82 |
|
83 |
+
snapshot_download(repo_id=REPO_ID, token= os.environ.get('SHARK_MODEL'),local_dir='model/')
|
84 |
|
85 |
|
86 |
|
|
|
105 |
# the dataset_meta is loaded from the checkpoint and
|
106 |
# then pass to the model in init_detector
|
107 |
visualizer.dataset_meta = model.dataset_meta
|
108 |
+
def inference_frame_serial(image):
|
109 |
+
result = inference_detector(model, image)
|
110 |
+
# show the results
|
111 |
+
visualizer.add_datasample(
|
112 |
+
'result',
|
113 |
+
image,
|
114 |
+
data_sample=result,
|
115 |
+
draw_gt = None,
|
116 |
+
show=False
|
117 |
+
)
|
118 |
+
frame = visualizer.get_image()
|
119 |
+
return frame
|
120 |
+
|
121 |
|
122 |
def inference_frame(image):
|
|
|
123 |
result = inference_detector(model, image)
|
124 |
# show the results
|
|
|
125 |
frames = []
|
126 |
cnt=0
|
127 |
|
|
|
138 |
cnt+=1
|
139 |
|
140 |
#frames = process_frames(result, image, visualizer)
|
141 |
+
|
|
|
142 |
return frames
|
143 |
|
144 |
def inference_frame_par_ready(image):
|