Spaces:
Runtime error
Runtime error
piperod
commited on
Commit
•
cd0d6f2
1
Parent(s):
5bbee66
adding examples
Browse files
app.py
CHANGED
@@ -2,9 +2,11 @@ import gradio as gr
|
|
2 |
import os
|
3 |
import subprocess
|
4 |
|
|
|
5 |
if os.getenv('SYSTEM') == 'spaces':
|
6 |
|
7 |
subprocess.call('pip install -U openmim'.split())
|
|
|
8 |
subprocess.call('pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113'.split())
|
9 |
subprocess.call('mim install mmcv>=2.0.0'.split())
|
10 |
subprocess.call('mim install mmengine'.split())
|
@@ -14,22 +16,27 @@ if os.getenv('SYSTEM') == 'spaces':
|
|
14 |
|
15 |
|
16 |
import cv2
|
17 |
-
|
|
|
18 |
import numpy as np
|
19 |
import gradio as gr
|
20 |
|
21 |
from inference import inference_frame
|
22 |
import os
|
|
|
23 |
|
24 |
def analize_video(x):
|
25 |
-
|
26 |
path = '/tmp/test/'
|
27 |
os.makedirs(path, exist_ok=True)
|
28 |
videos = len(os.listdir(path))
|
29 |
path = f'{path}{videos}'
|
30 |
os.makedirs(path, exist_ok=True)
|
31 |
outname = f'{path}_processed.mp4'
|
32 |
-
|
|
|
|
|
|
|
33 |
counter = 0
|
34 |
while(cap.isOpened()):
|
35 |
ret, frame = cap.read()
|
@@ -38,14 +45,19 @@ def analize_video(x):
|
|
38 |
frame = inference_frame(frame)
|
39 |
# write the flipped frame
|
40 |
cv2.imwrite(name, frame)
|
|
|
41 |
counter +=1
|
42 |
else:
|
43 |
break
|
44 |
# Release everything if job is finished
|
45 |
print(path)
|
46 |
-
os.system(f'''ffmpeg -framerate 20 -pattern_type glob -i '{path}/*.png' -c:v libx264 -pix_fmt yuv420p {outname}''')
|
47 |
return outname
|
48 |
|
|
|
|
|
|
|
|
|
49 |
with gr.Blocks(title='Shark Patrol',theme=gr.themes.Soft(),live=True,) as demo:
|
50 |
gr.Markdown("Initial DEMO.")
|
51 |
with gr.Tab("Shark Detector"):
|
@@ -56,12 +68,22 @@ with gr.Blocks(title='Shark Patrol',theme=gr.themes.Soft(),live=True,) as demo:
|
|
56 |
#video_output.style(witdh='50%',height='50%')
|
57 |
|
58 |
video_button = gr.Button("Analyze")
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
|
61 |
with gr.Accordion("Open for More!"):
|
62 |
gr.Markdown("Place holder for detection")
|
63 |
|
64 |
video_button.click(analize_video, inputs=video_input, outputs=video_output)
|
65 |
-
|
|
|
|
|
|
|
|
|
66 |
demo.queue()
|
67 |
-
|
|
|
|
2 |
import os
|
3 |
import subprocess
|
4 |
|
5 |
+
|
6 |
if os.getenv('SYSTEM') == 'spaces':
|
7 |
|
8 |
subprocess.call('pip install -U openmim'.split())
|
9 |
+
subprocess.call('pip install python-dotenv'.split())
|
10 |
subprocess.call('pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113'.split())
|
11 |
subprocess.call('mim install mmcv>=2.0.0'.split())
|
12 |
subprocess.call('mim install mmengine'.split())
|
|
|
16 |
|
17 |
|
18 |
import cv2
|
19 |
+
import dotenv
|
20 |
+
dotenv.load_dotenv()
|
21 |
import numpy as np
|
22 |
import gradio as gr
|
23 |
|
24 |
from inference import inference_frame
|
25 |
import os
|
26 |
+
import pathlib
|
27 |
|
28 |
def analize_video(x):
|
29 |
+
print(x)
|
30 |
path = '/tmp/test/'
|
31 |
os.makedirs(path, exist_ok=True)
|
32 |
videos = len(os.listdir(path))
|
33 |
path = f'{path}{videos}'
|
34 |
os.makedirs(path, exist_ok=True)
|
35 |
outname = f'{path}_processed.mp4'
|
36 |
+
if os.path.exists(outname):
|
37 |
+
print('video already processed')
|
38 |
+
return outname
|
39 |
+
cap = cv2.VideoCapture(x)
|
40 |
counter = 0
|
41 |
while(cap.isOpened()):
|
42 |
ret, frame = cap.read()
|
|
|
45 |
frame = inference_frame(frame)
|
46 |
# write the flipped frame
|
47 |
cv2.imwrite(name, frame)
|
48 |
+
|
49 |
counter +=1
|
50 |
else:
|
51 |
break
|
52 |
# Release everything if job is finished
|
53 |
print(path)
|
54 |
+
os.system(f'''ffmpeg -framerate 20 -pattern_type glob -i '{path}/*.png' -c:v libx264 -pix_fmt yuv420p {outname} -y''')
|
55 |
return outname
|
56 |
|
57 |
+
def set_example_image(example: list) -> dict:
|
58 |
+
return gr.Video.update(value=example[0])
|
59 |
+
|
60 |
+
|
61 |
with gr.Blocks(title='Shark Patrol',theme=gr.themes.Soft(),live=True,) as demo:
|
62 |
gr.Markdown("Initial DEMO.")
|
63 |
with gr.Tab("Shark Detector"):
|
|
|
68 |
#video_output.style(witdh='50%',height='50%')
|
69 |
|
70 |
video_button = gr.Button("Analyze")
|
71 |
+
with gr.Row():
|
72 |
+
paths = sorted(pathlib.Path('videos_example').rglob('*.mp4'))
|
73 |
+
example_images = gr.Dataset(components=[video_input],
|
74 |
+
samples=[[path.as_posix()]
|
75 |
+
for path in paths])
|
76 |
|
77 |
|
78 |
with gr.Accordion("Open for More!"):
|
79 |
gr.Markdown("Place holder for detection")
|
80 |
|
81 |
video_button.click(analize_video, inputs=video_input, outputs=video_output)
|
82 |
+
|
83 |
+
example_images.click(fn=set_example_image,
|
84 |
+
inputs=example_images,
|
85 |
+
outputs=video_input)
|
86 |
+
|
87 |
demo.queue()
|
88 |
+
#if os.getenv('SYSTEM') == 'spaces':
|
89 |
+
demo.launch(width='40%',auth=(os.environ.get('SHARK_USERNAME'), os.environ.get('SHARK_PASSWORD')))
|