import gradio as gr import os import subprocess from huggingface_hub import snapshot_download REPO_ID='piperod91/videos_examples' snapshot_download(repo_id=REPO_ID, token= os.environ.get('SHARK_MODEL'),repo_type='dataset',local_dir='videos_example') if os.getenv('SYSTEM') == 'spaces': subprocess.call('pip install -U openmim'.split()) subprocess.call('pip install python-dotenv'.split()) subprocess.call('pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113'.split()) subprocess.call('mim install mmcv>=2.0.0'.split()) subprocess.call('mim install mmengine'.split()) subprocess.call('mim install mmdet'.split()) subprocess.call('pip install opencv-python-headless==4.5.5.64'.split()) subprocess.call('pip install git+https://github.com/cocodataset/panopticapi.git'.split()) import cv2 import dotenv dotenv.load_dotenv() import numpy as np import gradio as gr import glob from inference import inference_frame import os import pathlib def analize_video(x): print(x) path = '/tmp/test/' os.makedirs(path, exist_ok=True) videos = len(os.listdir(path)) path = f'{path}{videos}' os.makedirs(path, exist_ok=True) outname = f'{path}_processed.mp4' if os.path.exists(outname): print('video already processed') return outname cap = cv2.VideoCapture(x) counter = 0 while(cap.isOpened()): ret, frame = cap.read() if ret==True: name = os.path.join(path,f'{counter:05d}.png') frame = inference_frame(frame) # write the flipped frame cv2.imwrite(name, frame) counter +=1 else: break # Release everything if job is finished print(path) os.system(f'''ffmpeg -framerate 20 -pattern_type glob -i '{path}/*.png' -c:v libx264 -pix_fmt yuv420p {outname} -y''') return outname def set_example_image(example: list) -> dict: return gr.Video.update(value=example[0]) def show_video(example: list) -> dict: return gr.Video.update(value=example[0]) with gr.Blocks(title='Shark Patrol',theme=gr.themes.Soft(),live=True,) as demo: gr.Markdown("Initial DEMO.") with gr.Tab("Shark Detector"): with gr.Row(): video_input = gr.Video(source='upload',include_audio=False) #video_input.style(witdh='50%',height='50%') video_output = gr.Video() #video_output.style(witdh='50%',height='50%') video_button = gr.Button("Analyze") with gr.Row(): paths = sorted(pathlib.Path('videos_example/').rglob('*.mp4')) example_images = gr.Dataset(components=[video_input], samples=[[path.as_posix()] for path in paths if 'videos_side_by_side' not in str(path)]) video_button.click(analize_video, inputs=video_input, outputs=video_output) example_images.click(fn=set_example_image, inputs=example_images, outputs=video_input) with gr.Accordion("Current Detections"): with gr.Row(): video_example = gr.Video(source='upload',include_audio=False,stream=True) with gr.Row(): paths = sorted(pathlib.Path('videos_example/').rglob('*rgb.mp4')) example_preds = gr.Dataset(components=[video_example], samples=[[path.as_posix()] for path in paths]) example_preds.click(fn=show_video, inputs=example_preds, outputs=video_example) demo.queue() #if os.getenv('SYSTEM') == 'spaces': demo.launch(width='40%',auth=(os.environ.get('SHARK_USERNAME'), os.environ.get('SHARK_PASSWORD')))