import gradio as gr import pandas as pd from transformers import BertTokenizer, BertForSequenceClassification import torch from datasets import load_dataset # Load pre-trained TinyBERT model and tokenizer tokenizer = BertTokenizer.from_pretrained('huawei-noah/TinyBERT_General_4L_312D') model = BertForSequenceClassification.from_pretrained('huawei-noah/TinyBERT_General_4L_312D') # Load dataset from Hugging Face repository # Replace 'your-username' and 'your-dataset-name' with actual values dataset = load_dataset('SharmaAmit1818/data_analysis/blob/main', data_files='data-qQeu1Z0CfsuqRUaDagRA1 (1).csv') # Function to process the CSV file and generate predictions def process_csv(file): try: # Read the CSV file using Pandas directly from the uploaded file object df = pd.read_csv(file) # Use the file object directly # Debugging: Print the DataFrame shape and columns print(f"DataFrame shape: {df.shape}") print(f"DataFrame columns: {df.columns.tolist()}") # Check for 'text' column if 'text' not in df.columns: return "Error: The CSV file must contain a 'text' column." # Tokenize input text inputs = tokenizer(df['text'].tolist(), return_tensors='pt', padding=True, truncation=True) # Perform inference with torch.no_grad(): outputs = model(**inputs) # Get predicted classes _, predicted_classes = torch.max(outputs.logits, dim=1) # Add predictions to DataFrame df['predicted_class'] = predicted_classes.numpy() # Return processed DataFrame as CSV string return df.to_csv(index=False) except FileNotFoundError: return "Error: The specified file was not found. Please check your upload." except pd.errors.EmptyDataError: return "Error: The uploaded file is empty." except pd.errors.ParserError: return "Error: There was an issue parsing the CSV file." except Exception as e: return f"An unexpected error occurred: {str(e)}" # Create Gradio interface input_csv = gr.File(label="Upload CSV File") output_csv = gr.File(label="Download Processed CSV") demo = gr.Interface( fn=process_csv, inputs=input_csv, outputs=output_csv, title="CSV Data Processing with TinyBERT", description="Upload a CSV file with a 'text' column, and the model will process the data and provide predictions." ) # Launch Gradio interface demo.launch()