import gradio as gr import pandas as pd from transformers import BertTokenizer, BertForSequenceClassification import torch # Load pre-trained TinyBERT model and tokenizer tokenizer = BertTokenizer.from_pretrained('huawei-noah/TinyBERT_General_4L_312D') model = BertForSequenceClassification.from_pretrained('huawei-noah/TinyBERT_General_4L_312D') # Function to process the CSV file and generate predictions def process_csv(file): # Read the CSV file df = pd.read_csv(file) # Ensure the CSV has a 'text' column if 'text' not in df.columns: return "Error: The CSV file must contain a 'text' column." # Tokenize the input text inputs = tokenizer(df['text'].tolist(), return_tensors='pt', padding=True, truncation=True) # Perform inference with torch.no_grad(): outputs = model(**inputs) # Get predicted classes _, predicted_classes = torch.max(outputs.logits, dim=1) df['predicted_class'] = predicted_classes.numpy() # Return the processed DataFrame as a CSV string return df.to_csv(index=False) # Create the Gradio interface input_csv = gr.File(label="Upload CSV File") output_csv = gr.File(label="Download Processed CSV") demo = gr.Interface( fn=process_csv, inputs=input_csv, outputs=output_csv, title="CSV Data Processing with TinyBERT", description="Upload a CSV file with a 'text' column, and the model will process the data and provide predictions." ) # Launch the Gradio interface demo.launch()