Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import random
|
3 |
+
import time
|
4 |
+
|
5 |
+
from langchain.chat_models import ChatOpenAI
|
6 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
7 |
+
from langchain.vectorstores import Pinecone
|
8 |
+
from langchain.chains.retrieval_qa.base import RetrievalQA
|
9 |
+
from langchain.chains.question_answering import load_qa_chain
|
10 |
+
import pinecone
|
11 |
+
|
12 |
+
import os
|
13 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
14 |
+
|
15 |
+
OPENAI_KEY = ""
|
16 |
+
OPENAI_TEMP = 0
|
17 |
+
PINECONE_KEY = os.environ["PINECONE_KEY"]
|
18 |
+
PINECONE_ENV = "asia-northeast1-gcp"
|
19 |
+
PINECONE_INDEX = "3gpp"
|
20 |
+
|
21 |
+
# return top-k text chunk from vector store
|
22 |
+
VECTOR_SEARCH_TOP_K = 10
|
23 |
+
|
24 |
+
# LLM input history length
|
25 |
+
LLM_HISTORY_LEN = 3
|
26 |
+
|
27 |
+
|
28 |
+
BUTTON_MIN_WIDTH = 150
|
29 |
+
|
30 |
+
MODEL_STATUS = "Wait for API Key to Initialize."
|
31 |
+
|
32 |
+
MODEL_LOADED = "Model Loaded"
|
33 |
+
|
34 |
+
MODEL_WARNING = "Please paste your OpenAI API Key from openai.com to initialize this application!"
|
35 |
+
|
36 |
+
|
37 |
+
webui_title = """
|
38 |
+
# 3GPP OpenAI Chatbot for Hackathon Demo
|
39 |
+
|
40 |
+
"""
|
41 |
+
|
42 |
+
init_message = """Welcome to use 3GPP Chatbot
|
43 |
+
This demo toolkit is based on OpenAI with langchain and pinecone
|
44 |
+
Please insert your question and click 'Submit'
|
45 |
+
"""
|
46 |
+
|
47 |
+
|
48 |
+
def init_model(openai_key):
|
49 |
+
try:
|
50 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
51 |
+
|
52 |
+
pinecone.init(api_key = PINECONE_KEY,
|
53 |
+
environment = PINECONE_ENV)
|
54 |
+
|
55 |
+
llm = ChatOpenAI(temperature = OPENAI_TEMP,
|
56 |
+
openai_api_key = openai_key)
|
57 |
+
|
58 |
+
global db
|
59 |
+
db = Pinecone.from_existing_index(index_name = PINECONE_INDEX,
|
60 |
+
embedding = embeddings)
|
61 |
+
global chain
|
62 |
+
chain = load_qa_chain(llm, chain_type="stuff")
|
63 |
+
|
64 |
+
global MODEL_STATUS
|
65 |
+
MODEL_STATUS = MODEL_LOADED
|
66 |
+
|
67 |
+
return openai_key, ""
|
68 |
+
except Exception as e:
|
69 |
+
print(e)
|
70 |
+
return "",""
|
71 |
+
|
72 |
+
def get_chat_history(inputs) -> str:
|
73 |
+
res = []
|
74 |
+
for human, ai in inputs:
|
75 |
+
res.append(f"Human: {human}\nAI: {ai}")
|
76 |
+
return "\n".join(res)
|
77 |
+
|
78 |
+
css = """.bigbox {
|
79 |
+
min-height:200px;
|
80 |
+
}"""
|
81 |
+
|
82 |
+
with gr.Blocks(css=css) as demo:
|
83 |
+
|
84 |
+
gr.Markdown(webui_title)
|
85 |
+
gr.Markdown(init_message)
|
86 |
+
|
87 |
+
if OPENAI_KEY and OPENAI_KEY.startswith("sk-") and len(OPENAI_KEY) > 50:
|
88 |
+
api_textbox_ph = "API Founded in Environment Variable: sk-..." + OPENAI_KEY[-4:]
|
89 |
+
api_textbox_edit = False
|
90 |
+
init_model(OPENAI_KEY)
|
91 |
+
else:
|
92 |
+
api_textbox_ph = "Paste Your OpenAI API Key (sk-...) and Hit ENTER"
|
93 |
+
api_textbox_edit = True
|
94 |
+
|
95 |
+
api_textbox = gr.Textbox(placeholder = api_textbox_ph,
|
96 |
+
interactive = api_textbox_edit,
|
97 |
+
show_label=False, lines=1, type='password')
|
98 |
+
|
99 |
+
|
100 |
+
with gr.Tab("Chatbot"):
|
101 |
+
with gr.Row():
|
102 |
+
with gr.Column(scale=10):
|
103 |
+
chatbot = gr.Chatbot(elem_classes="bigbox")
|
104 |
+
'''
|
105 |
+
with gr.Column(scale=1, min_width=BUTTON_MIN_WIDTH):
|
106 |
+
temp = gr.Slider(0,
|
107 |
+
2,
|
108 |
+
value=OPENAI_TEMP,
|
109 |
+
step=0.1,
|
110 |
+
label="temperature",
|
111 |
+
interactive=True)
|
112 |
+
init = gr.Button("Init")
|
113 |
+
'''
|
114 |
+
with gr.Row():
|
115 |
+
with gr.Column(scale=10):
|
116 |
+
query = gr.Textbox(label="Question:",
|
117 |
+
lines=2)
|
118 |
+
ref = gr.Textbox(label="Reference(optional):")
|
119 |
+
with gr.Column(scale=1, min_width=BUTTON_MIN_WIDTH):
|
120 |
+
clear = gr.Button("Clear")
|
121 |
+
submit = gr.Button("Submit",variant="primary")
|
122 |
+
|
123 |
+
|
124 |
+
with gr.Tab("Details"):
|
125 |
+
top_k = gr.Slider(1,
|
126 |
+
20,
|
127 |
+
value=VECTOR_SEARCH_TOP_K,
|
128 |
+
step=1,
|
129 |
+
label="Vector similarity top_k",
|
130 |
+
interactive=True)
|
131 |
+
detail_panel = gr.Chatbot(label="Related Docs")
|
132 |
+
|
133 |
+
|
134 |
+
def user(user_message, history):
|
135 |
+
return "", history+[[user_message, None]]
|
136 |
+
|
137 |
+
def bot(box_message, ref_message, top_k):
|
138 |
+
if MODEL_STATUS != MODEL_LOADED:
|
139 |
+
box_message[-1][1] = MODEL_WARNING
|
140 |
+
return box_message, "", ""
|
141 |
+
|
142 |
+
# bot_message = random.choice(["Yes", "No"])
|
143 |
+
# 0 is user question, 1 is bot response
|
144 |
+
question = box_message[-1][0]
|
145 |
+
history = box_message[:-1]
|
146 |
+
|
147 |
+
if not ref_message:
|
148 |
+
ref_message = question
|
149 |
+
details = f"Q: {question}"
|
150 |
+
else:
|
151 |
+
details = f"Q: {question}\nR: {ref_message}"
|
152 |
+
|
153 |
+
#print(question, ref_message)
|
154 |
+
#print(history)
|
155 |
+
#print(get_chat_history(history))
|
156 |
+
|
157 |
+
docsearch = db.as_retriever(search_kwargs={'k':top_k})
|
158 |
+
docs = docsearch.get_relevant_documents(ref_message)
|
159 |
+
all_output = chain({"input_documents": docs,
|
160 |
+
"question": question,
|
161 |
+
"chat_history": get_chat_history(history)})
|
162 |
+
bot_message = all_output['output_text']
|
163 |
+
#print(docs)
|
164 |
+
|
165 |
+
source = "".join([f"""<details> <summary>{doc.metadata["source"]}</summary>
|
166 |
+
{doc.page_content}
|
167 |
+
|
168 |
+
</details>""" for i, doc in enumerate(docs)])
|
169 |
+
|
170 |
+
#print(source)
|
171 |
+
|
172 |
+
box_message[-1][1] = bot_message
|
173 |
+
return box_message, "", [[details, source]]
|
174 |
+
|
175 |
+
submit.click(user, [query, chatbot], [query, chatbot], queue=False).then(
|
176 |
+
bot, [chatbot, ref, top_k], [chatbot, ref, detail_panel]
|
177 |
+
)
|
178 |
+
api_textbox.submit(init_model, api_textbox, [api_textbox, chatbot])
|
179 |
+
clear.click(lambda: (None,None,None), None, [query, ref, chatbot], queue=False)
|
180 |
+
|
181 |
+
if __name__ == "__main__":
|
182 |
+
demo.launch(share=False, inbrowser=True)
|
183 |
+
|