File size: 20,252 Bytes
6a6474f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 |
#!/usr/bin/env python3
"""
PyTorch Lightning for ResNet Architecture
Author: Shilpaj Bhalerao
"""
# Standard Library Imports
import os
import math
# Third-Party Imports
import numpy as np
import matplotlib.pyplot as plt
import albumentations as A
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader, random_split
from torchvision import transforms
from torchvision.datasets import CIFAR10
from pytorch_lightning import LightningModule, Trainer
from torchmetrics import Accuracy
# Local Imports
from datasets import AlbumDataset
from utils import get_cifar_statistics
from visualize import visualize_cifar_augmentation, display_cifar_data_samples
class Layers:
"""
Class containing different types of Convolutional layer
"""
def __init__(self, groups=1):
"""
Constructor
"""
self.group = groups
@staticmethod
def standard_conv_layer(in_channels: int,
out_channels: int,
kernel_size: int = 3,
padding: int = 0,
stride: int = 1,
dilation: int = 1,
normalization: str = "batch",
last_layer: bool = False,
conv_type: str = "standard",
groups: int = 1):
"""
Method to return a standard convolution block
:param in_channels: Number of input channels
:param out_channels: Number of output channels
:param kernel_size: Size of the kernel used in the layer
:param padding: Padding used in the layer
:param stride: Stride used for convolution
:param dilation: Dilation for Atrous convolution
:param normalization: Type of normalization technique used
:param last_layer: Flag to indicate if the layer is last convolutional layer of the network
:param conv_type: Type of convolutional layer
:param groups: Number of Groups for Group Normalization
"""
# Select normalization type
if normalization == "layer":
_norm_layer = nn.GroupNorm(1, out_channels)
elif normalization == "group":
if not groups:
raise ValueError("Value of group is not defined")
_norm_layer = nn.GroupNorm(groups, out_channels)
else:
_norm_layer = nn.BatchNorm2d(out_channels)
# Select the convolution layer type
if conv_type == "standard":
conv_layer = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, stride=stride,
kernel_size=kernel_size, bias=False, padding=padding)
elif conv_type == "depthwise":
conv_layer = Layers.depthwise_conv(in_channels=in_channels, out_channels=out_channels, stride=stride,
padding=padding)
elif conv_type == "dilated":
conv_layer = Layers.dilated_conv(in_channels=in_channels, out_channels=out_channels, stride=stride,
padding=padding, dilation=dilation)
# For last layer only return the convolution output
if last_layer:
return nn.Sequential(conv_layer)
return nn.Sequential(
conv_layer,
_norm_layer,
nn.ReLU(),
# nn.Dropout(self.dropout_value)
)
@staticmethod
def resnet_block(channels):
"""
Method to create a RESNET block
"""
return nn.Sequential(
nn.Conv2d(in_channels=channels, out_channels=channels, stride=1, kernel_size=3, bias=False, padding=1),
nn.BatchNorm2d(channels),
nn.ReLU(),
nn.Conv2d(in_channels=channels, out_channels=channels, stride=1, kernel_size=3, bias=False, padding=1),
nn.BatchNorm2d(channels),
nn.ReLU(),
)
@staticmethod
def custom_block(input_channels, output_channels):
"""
Method to create a custom configured block
:param input_channels: Number of input channels
:param output_channels: Number of output channels
"""
return nn.Sequential(
nn.Conv2d(in_channels=input_channels, out_channels=output_channels, stride=1, kernel_size=3, bias=False,
padding=1),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.BatchNorm2d(output_channels),
nn.ReLU(),
)
@staticmethod
def depthwise_conv(in_channels, out_channels, stride=1, padding=0):
"""
Method to return the depthwise separable convolution layer
:param in_channels: Number of input channels
:param out_channels: Number of output channels
:param padding: Padding used in the layer
:param stride: Stride used for convolution
"""
return nn.Sequential(
nn.Conv2d(in_channels=in_channels, out_channels=in_channels, stride=stride, groups=in_channels,
kernel_size=3, bias=False, padding=padding),
nn.Conv2d(in_channels=in_channels, out_channels=out_channels, stride=stride, kernel_size=1, bias=False,
padding=0)
)
@staticmethod
def dilated_conv(in_channels, out_channels, stride=1, padding=0, dilation=1):
"""
Method to return the dilated convolution layer
:param in_channels: Number of input channels
:param out_channels: Number of output channels
:param stride: Stride used for convolution
:param padding: Padding used in the layer
:param dilation: Dilation value for a kernel
"""
return nn.Sequential(
nn.Conv2d(in_channels=in_channels, out_channels=out_channels, stride=stride, kernel_size=3, bias=False,
padding=padding, dilation=dilation)
)
class LITResNet(LightningModule, Layers):
"""
David's Model Architecture for Session-10 CIFAR10 dataset
"""
def __init__(self, class_names, data_dir='/data/'):
"""
Constructor
"""
# Initialize the Module class
super().__init__()
# Initialize variables
self.classes = class_names
self.data_dir = data_dir
self.num_classes = 10
self._learning_rate = 0.03
self.inv_normalize = transforms.Normalize(
mean=[-0.50 / 0.23, -0.50 / 0.23, -0.50 / 0.23],
std=[1 / 0.23, 1 / 0.23, 1 / 0.23]
)
self.batch_size = 512
self.epochs = 24
self.accuracy = Accuracy(task='multiclass',
num_classes=10)
self.train_transforms = transforms.Compose([transforms.ToTensor()])
self.test_transforms = transforms.Compose([transforms.ToTensor()])
self.stats_train = None
self.stats_test = None
self.cifar10_train = None
self.cifar10_test = None
self.cifar10_val = None
self.misclassified_data = None
# Defined Layers for the model
self.prep_layer = None
self.custom_block1 = None
self.custom_block2 = None
self.custom_block3 = None
self.resnet_block1 = None
self.resnet_block3 = None
self.pool4 = None
self.fc = None
self.dropout_value = None
# Initialize all the layers
self.model_layers()
# ##################################################################################################
# ################################ Model Architecture Related Hooks ################################
# ##################################################################################################
def model_layers(self):
"""
Method to initialize layers for the model
"""
# Prep Layer
self.prep_layer = Layers.standard_conv_layer(in_channels=3, out_channels=64, kernel_size=3, padding=1, stride=1)
# Convolutional Block-1
self.custom_block1 = Layers.custom_block(input_channels=64, output_channels=128)
self.resnet_block1 = Layers.resnet_block(channels=128)
# Convolutional Block-2
self.custom_block2 = Layers.custom_block(input_channels=128, output_channels=256)
# Convolutional Block-3
self.custom_block3 = Layers.custom_block(input_channels=256, output_channels=512)
self.resnet_block3 = Layers.resnet_block(channels=512)
# MaxPool Layer
self.pool4 = nn.MaxPool2d(kernel_size=4, stride=2)
# Fully Connected Layer
self.fc = nn.Linear(in_features=512, out_features=10, bias=False)
# Dropout value of 10%
self.dropout_value = 0.1
def forward(self, x):
"""
Forward pass for model training
:param x: Input layer
:return: Model Prediction
"""
# Prep Layer
x = self.prep_layer(x)
# Convolutional Block-1
x = self.custom_block1(x)
r1 = self.resnet_block1(x)
x = x + r1
# Convolutional Block-2
x = self.custom_block2(x)
# Convolutional Block-3
x = self.custom_block3(x)
r2 = self.resnet_block3(x)
x = x + r2
# MaxPool Layer
x = self.pool4(x)
# Fully Connected Layer
x = x.view(-1, 512)
x = self.fc(x)
return F.log_softmax(x, dim=1)
# ##################################################################################################
# ############################## Training Configuration Related Hooks ##############################
# ##################################################################################################
def configure_optimizers(self):
"""
Method to configure the optimizer and learning rate scheduler
"""
learning_rate = 0.03
weight_decay = 1e-4
optimizer = optim.Adam(self.parameters(), lr=learning_rate, weight_decay=weight_decay)
# Scheduler
scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer,
max_lr=self._learning_rate,
steps_per_epoch=len(self.train_dataloader()),
epochs=self.epochs,
pct_start=5 / self.epochs,
div_factor=100,
three_phase=False,
final_div_factor=100,
anneal_strategy="linear"
)
return [optimizer], [{'scheduler': scheduler, 'interval': 'step'}]
@property
def learning_rate(self) -> float:
"""
Method to get the learning rate value
"""
return self._learning_rate
@learning_rate.setter
def learning_rate(self, value: float):
"""
Method to set the learning rate value
:param value: Updated value of learning rate
"""
self._learning_rate = value
def set_training_confi(self, *, epochs, batch_size):
"""
Method to set parameters required for model training
:param epochs: Number of epochs for which model is to be trained
:param batch_size: Batch Size
"""
self.epochs = epochs
self.batch_size = batch_size
# #################################################################################################
# ################################## Training Loop Related Hooks ##################################
# #################################################################################################
def training_step(self, train_batch, batch_index):
"""
Method called on training dataset to train the model
:param train_batch: Batch containing images and labels
:param batch_index: Index of the batch
"""
x, y = train_batch
logits = self.forward(x)
loss = F.cross_entropy(logits, y)
preds = torch.argmax(logits, dim=1)
self.accuracy(preds, y)
self.log("train_loss", loss, prog_bar=True)
self.log("train_acc", self.accuracy, prog_bar=True)
return loss
def validation_step(self, batch, batch_idx):
"""
Method called on validation dataset to check if the model is learning
:param batch: Batch containing images and labels
:param batch_idx: Index of the batch
"""
x, y = batch
logits = self.forward(x)
loss = F.nll_loss(logits, y)
preds = torch.argmax(logits, dim=1)
self.accuracy(preds, y)
# Calling self.log will surface up scalars for you in TensorBoard
self.log("val_loss", loss, prog_bar=True)
self.log("val_acc", self.accuracy, prog_bar=True)
return loss
def test_step(self, batch, batch_idx):
"""
Method called on test dataset to check model performance on unseen data
:param batch: Batch containing images and labels
:param batch_idx: Index of the batch
"""
# Here we just reuse the validation_step for testing
return self.validation_step(batch, batch_idx)
# ##############################################################################################
# ##################################### Data Related Hooks #####################################
# ##############################################################################################
def set_transforms(self, train_set_transforms: dict, test_set_transforms: dict):
"""
Method to set the transformations to be done on training and test datasets
:param train_set_transforms: Dictionary of transformations for training dataset
:param test_set_transforms: Dictionary of transformations for test dataset
"""
self.train_transforms = A.Compose(train_set_transforms.values())
self.test_transforms = A.Compose(test_set_transforms.values())
def prepare_data(self):
"""
Method to download the dataset
"""
self.stats_train = CIFAR10('./data', train=True, download=True, transform=transforms.ToTensor())
self.stats_test = CIFAR10('./data', train=False, download=True, transform=transforms.ToTensor())
def setup(self, stage=None):
"""
Method to create Split the dataset into train, test and val
"""
# Only if dataset is not already split, perform the split operation
if not self.cifar10_train and not self.cifar10_test and not self.cifar10_val:
# Assign train/val datasets for use in dataloaders
if stage == "fit" or stage is None:
cifar10_full = AlbumDataset(self.data_dir, train=True, download=True, transform=self.train_transforms)
self.cifar10_train, self.cifar10_val = random_split(cifar10_full, [45_000, 5_000])
# Assign test dataset for use in dataloader(s)
if stage == "test" or stage is None:
self.cifar10_test = AlbumDataset(self.data_dir, train=False, download=True,
transform=self.test_transforms)
def train_dataloader(self):
"""
Method to return the DataLoader for Training set
"""
return DataLoader(self.cifar10_train, batch_size=self.batch_size, num_workers=os.cpu_count())
def val_dataloader(self):
"""
Method to return the DataLoader for the Validation set
"""
return DataLoader(self.cifar10_val, batch_size=self.batch_size, num_workers=os.cpu_count())
def test_dataloader(self):
"""
Method to return the DataLoader for the Test set
"""
return DataLoader(self.cifar10_test, batch_size=self.batch_size, num_workers=os.cpu_count())
def get_statistics(self, data_set_type="Train"):
"""
Method to get the statistics for CIFAR10 dataset
"""
# Execute self.prepare_data() only if not done earlier
if not self.stats_train and not self.stats_test:
self.prepare_data()
# Print stats for selected dataset
if data_set_type == "Train":
get_cifar_statistics(self.stats_train)
else:
get_cifar_statistics(self.stats_test, data_set_type="Test")
def display_data_samples(self, dataset="train", num_of_images=20):
"""
Method to display data samples
"""
# Execute self.prepare_data() only if not done earlier
try:
assert self.stats_train
except AttributeError:
self.prepare_data()
if dataset == "train":
display_cifar_data_samples(self.stats_train, num_of_images, self.classes)
else:
display_cifar_data_samples(self.stats_test, num_of_images, self.classes)
@staticmethod
def visualize_augmentation(aug_set_transforms: dict):
"""
Method to visualize augmentations
:param aug_set_transforms: Dictionary of transformations to be visualized
"""
aug_train = AlbumDataset('./data', train=True, download=True)
visualize_cifar_augmentation(aug_train, aug_set_transforms)
# #############################################################################################
# ############################## Misclassified Data Related Hooks ##############################
# #############################################################################################
def get_misclassified_data(self):
"""
Function to run the model on test set and return misclassified images
"""
if self.misclassified_data:
return self.misclassified_data
self.misclassified_data = []
self.prepare_data()
self.setup()
test_loader = self.test_dataloader()
# Reset the gradients
with torch.no_grad():
# Extract images, labels in a batch
for data, target in test_loader:
# Migrate the data to the device
data, target = data.to(self.device), target.to(self.device)
# Extract single image, label from the batch
for image, label in zip(data, target):
# Add batch dimension to the image
image = image.unsqueeze(0)
# Get the model prediction on the image
output = self.forward(image)
# Convert the output from one-hot encoding to a value
pred = output.argmax(dim=1, keepdim=True)
# If prediction is incorrect, append the data
if pred != label:
self.misclassified_data.append((image, label, pred))
return self.misclassified_data
def display_cifar_misclassified_data(self, number_of_samples: int = 10):
"""
Function to plot images with labels
:param number_of_samples: Number of images to print
"""
if not self.misclassified_data:
self.misclassified_data = self.get_misclassified_data()
fig = plt.figure(figsize=(10, 10))
x_count = 5
y_count = 1 if number_of_samples <= 5 else math.floor(number_of_samples / x_count)
for i in range(number_of_samples):
plt.subplot(y_count, x_count, i + 1)
img = self.misclassified_data[i][0].squeeze().to('cpu')
img = self.inv_normalize(img)
plt.imshow(np.transpose(img, (1, 2, 0)))
plt.title(
r"Correct: " + self.classes[self.misclassified_data[i][1].item()] + '\n' + 'Output: ' + self.classes[
self.misclassified_data[i][2].item()])
plt.xticks([])
plt.yticks([])
|