import streamlit as st | |
import pandas as pd | |
import numpy as np | |
import torch | |
import evaluate | |
from datasets import load_dataset | |
from evaluate import load as load_metric | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
from sklearn.metrics import accuracy_score, f1_score | |
from tqdm.auto import tqdm | |
from torch.utils.data import DataLoader | |
st.set_page_config(layout="wide") | |
select = st.selectbox('Which model would you like to evaluate?', | |
('Bart', 'mBart')) | |
def get_datasets(): | |
if select == 'Bart': | |
all_datasets = ["Communication Networks: unseen questions", "Communication Networks: unseen answers"] | |
if select == 'mBart': | |
all_datasets = ["Micro Job: unseen questions", "Micro Job: unseen answers", "Legal Domain: unseen questions", "Legal Domain: unseen answers"] | |
return all_datasets | |
all_datasets = get_datasets() | |
#def get_split(dataset_name): | |
# if dataset_name == "Communication Networks: unseen questions": | |
# split = load_dataset("Short-Answer-Feedback/saf_communication_networks_english", split="test_unseen_questions") | |
# if dataset_name == "Communication Networks: unseen answers": | |
# split = load_dataset("Short-Answer-Feedback/saf_communication_networks_english", split="test_unseen_answers") | |
# if dataset_name == "Micro Job: unseen questions": | |
# split = load_dataset("Short-Answer-Feedback/saf_micro_job_german", split="test_unseen_questions") | |
# if dataset_name == "Micro Job: unseen answers": | |
# split = load_dataset("Short-Answer-Feedback/saf_micro_job_german", split="test_unseen_answers") | |
# if dataset_name == "Legal Domain: unseen questions": | |
# split = load_dataset("Short-Answer-Feedback/saf_legal_domain_german", split="test_unseen_questions") | |
# if dataset_name == "Legal Domain: unseen answers": | |
# split = load_dataset("Short-Answer-Feedback/saf_legal_domain_german", split="test_unseen_answers") | |
# return split | |
def get_model(datasetname): | |
if datasetname == "Communication Networks: unseen questions" or datasetname == "Communication Networks: unseen answers": | |
model = "Short-Answer-Feedback/bart-finetuned-saf-communication-networks" | |
if datasetname == "Micro Job: unseen questions" or datasetname == "Micro Job: unseen answers": | |
model = "Short-Answer-Feedback/mbart-finetuned-saf-micro-job" | |
if datasetname == "Legal Domain: unseen questions" or datasetname == "Legal Domain: unseen answers": | |
model = "Short-Answer-Feedback/mbart-finetuned-saf-legal-domain" | |
return model | |
# def get_tokenizer(datasetname): | |
# if datasetname == "Communication Networks: unseen questions" or datasetname == "Communication Networks: unseen answers": | |
# tokenizer = "Short-Answer-Feedback/bart-finetuned-saf-communication-networks" | |
# if datasetname == "Micro Job: unseen questions" or datasetname == "Micro Job: unseen answers": | |
# tokenizer = "Short-Answer-Feedback/mbart-finetuned-saf-micro-job" | |
# if datasetname == "Legal Domain: unseen questions" or datasetname == "Legal Domain: unseen answers": | |
# tokenizer = "Short-Answer-Feedback/mbart-finetuned-saf-legal-domain" | |
# return tokenizer | |
# sacrebleu = load_metric('sacrebleu') | |
# rouge = load_metric('rouge') | |
# meteor = load_metric('meteor') | |
# bertscore = load_metric('bertscore') | |
# # use gpu if it's available | |
# device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') | |
# MAX_INPUT_LENGTH = 256 | |
# MAX_TARGET_LENGTH = 128 | |
# def preprocess_function(examples, **kwargs): | |
# """ | |
# Preprocess entries of the given dataset | |
# Params: | |
# examples (Dataset): dataset to be preprocessed | |
# Returns: | |
# model_inputs (BatchEncoding): tokenized dataset entries | |
# """ | |
# inputs, targets = [], [] | |
# for i in range(len(examples['question'])): | |
# inputs.append(f"Antwort: {examples['provided_answer'][i]} Lösung: {examples['reference_answer'][i]} Frage: {examples['question'][i]}") | |
# targets.append(f"{examples['verification_feedback'][i]} Feedback: {examples['answer_feedback'][i]}") | |
# # apply tokenization to inputs and labels | |
# tokenizer = kwargs["tokenizer"] | |
# model_inputs = tokenizer(inputs, max_length=MAX_INPUT_LENGTH, padding='max_length', truncation=True) | |
# labels = tokenizer(text_target=targets, max_length=MAX_TARGET_LENGTH, padding='max_length', truncation=True) | |
# model_inputs['labels'] = labels['input_ids'] | |
# return model_inputs | |
# def flatten_list(l): | |
# """ | |
# Utility function to convert a list of lists into a flattened list | |
# Params: | |
# l (list of lists): list to be flattened | |
# Returns: | |
# A flattened list with the elements of the original list | |
# """ | |
# return [item for sublist in l for item in sublist] | |
# def extract_feedback(predictions): | |
# """ | |
# Utility function to extract the feedback from the predictions of the model | |
# Params: | |
# predictions (list): complete model predictions | |
# Returns: | |
# feedback (list): extracted feedback from the model's predictions | |
# """ | |
# feedback = [] | |
# # iterate through predictions and try to extract predicted feedback | |
# for pred in predictions: | |
# try: | |
# fb = pred.split(':', 1)[1] | |
# except IndexError: | |
# try: | |
# if pred.lower().startswith('partially correct'): | |
# fb = pred.split(' ', 1)[2] | |
# else: | |
# fb = pred.split(' ', 1)[1] | |
# except IndexError: | |
# fb = pred | |
# feedback.append(fb.strip()) | |
# return feedback | |
# def extract_labels(predictions): | |
# """ | |
# Utility function to extract the labels from the predictions of the model | |
# Params: | |
# predictions (list): complete model predictions | |
# Returns: | |
# feedback (list): extracted labels from the model's predictions | |
# """ | |
# labels = [] | |
# for pred in predictions: | |
# if pred.lower().startswith('correct'): | |
# label = 'Correct' | |
# elif pred.lower().startswith('partially correct'): | |
# label = 'Partially correct' | |
# elif pred.lower().startswith('incorrect'): | |
# label = 'Incorrect' | |
# else: | |
# label = 'Unknown label' | |
# labels.append(label) | |
# return labels | |
# def get_predictions_labels(model, dataloader, tokenizer): | |
# """ | |
# Evaluate model on the given dataset | |
# Params: | |
# model (PreTrainedModel): seq2seq model | |
# dataloader (torch Dataloader): dataloader of the dataset to be used for evaluation | |
# Returns: | |
# results (dict): dictionary with the computed evaluation metrics | |
# predictions (list): list of the decoded predictions of the model | |
# """ | |
# decoded_preds, decoded_labels = [], [] | |
# model.eval() | |
# # iterate through batchs in the dataloader | |
# for batch in tqdm(dataloader): | |
# with torch.no_grad(): | |
# batch = {k: v.to(device) for k, v in batch.items()} | |
# # generate tokens from batch | |
# generated_tokens = model.generate( | |
# batch['input_ids'], | |
# attention_mask=batch['attention_mask'], | |
# max_length=MAX_TARGET_LENGTH | |
# ) | |
# # get golden labels from batch | |
# labels_batch = batch['labels'] | |
# # decode model predictions and golden labels | |
# decoded_preds_batch = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) | |
# decoded_labels_batch = tokenizer.batch_decode(labels_batch, skip_special_tokens=True) | |
# decoded_preds.append(decoded_preds_batch) | |
# decoded_labels.append(decoded_labels_batch) | |
# # convert predictions and golden labels into flattened lists | |
# predictions = flatten_list(decoded_preds) | |
# labels = flatten_list(decoded_labels) | |
# return predictions, labels | |
# def load_data(): | |
# df = pd.DataFrame(columns=['Model', 'Dataset', 'SacreBLEU', 'ROUGE-2', 'METEOR', 'BERTScore', 'Accuracy', 'Weighted F1', 'Macro F1']) | |
# for ds in all_datasets: | |
# split = get_split(ds) | |
# model = AutoModelForSeq2SeqLM.from_pretrained(get_model(ds)) | |
# tokenizer = AutoTokenizer.from_pretrained(get_tokenizer(ds)) | |
# processed_dataset = split.map( | |
# preprocess_function, | |
# batched=True, | |
# remove_columns=split.column_names, | |
# fn_kwargs={"tokenizer": tokenizer} | |
# ) | |
# processed_dataset.set_format('torch') | |
# dataloader = DataLoader(processed_dataset, batch_size=4) | |
# predictions, labels = get_predictions_labels(model, dataloader, tokenizer) | |
# predicted_feedback = extract_feedback(predictions) | |
# predicted_labels = extract_labels(predictions) | |
# reference_feedback = [x.split('Feedback:', 1)[1].strip() for x in labels] | |
# reference_labels = [x.split('Feedback:', 1)[0].strip() for x in labels] | |
# rouge_score = rouge.compute(predictions=predicted_feedback, references=reference_feedback)['rouge2'] | |
# bleu_score = sacrebleu.compute(predictions=predicted_feedback, references=[[x] for x in reference_feedback])['score'] | |
# meteor_score = meteor.compute(predictions=predicted_feedback, references=reference_feedback)['meteor'] | |
# bert_score = bertscore.compute(predictions=predicted_feedback, references=reference_feedback, lang='de', model_type='bert-base-multilingual-cased', rescale_with_baseline=True) | |
# reference_labels_np = np.array(reference_labels) | |
# accuracy_value = accuracy_score(reference_labels_np, predicted_labels) | |
# f1_weighted_value = f1_score(reference_labels_np, predicted_labels, average='weighted') | |
# f1_macro_value = f1_score(reference_labels_np, predicted_labels, average='macro', labels=['Incorrect', 'Partially correct', 'Correct']) | |
# new_row_data = {"Model": get_model(ds), "Dataset": ds, "SacreBLEU": bleu_score, "ROUGE-2": rouge_score, "METEOR": meteor_score, "BERTScore": bert_score, "Accuracy": accuracy_value, "Weighted F1": f1_weighted_value, "Macro F1": f1_macro_value} | |
# new_row = pd.DataFrame(new_row_data) | |
# df = pd.concat([df, new_row]) | |
# return df | |
def get_rows(datasetname): | |
if datasetname == "Communication Networks: unseen questions": | |
row = pd.DataFrame( | |
{ | |
'Model': get_model(datasetname), | |
'Dataset': datasetname, | |
'SacreBLEU': [2.4], | |
'ROUGE-2': [20.1], | |
'METEOR': [28.5], | |
'BERTScore': [36.6], | |
'Accuracy': [51.6], | |
'Weighted F1': [41.0], | |
'Macro F1': [27.9], | |
} | |
) | |
if datasetname == "Communication Networks: unseen answers": | |
row = pd.DataFrame( | |
{ | |
'Model': get_model(datasetname), | |
'Dataset': datasetname, | |
'SacreBLEU': [36.0], | |
'ROUGE-2': [49.1], | |
'METEOR': [60.8], | |
'BERTScore': [69.5], | |
'Accuracy': [76.0], | |
'Weighted F1': [73.0], | |
'Macro F1': [53.4], | |
} | |
) | |
if datasetname == "Micro Job: unseen questions": | |
row = pd.DataFrame( | |
{ | |
'Model': get_model(datasetname), | |
'Dataset': datasetname, | |
'SacreBLEU': [0.3], | |
'ROUGE-2': [0.5], | |
'METEOR': [33.8], | |
'BERTScore': [31.3], | |
'Accuracy': [48.7], | |
'Weighted F1': [46.5], | |
'Macro F1': [40.6], | |
} | |
) | |
if datasetname == "Micro Job: unseen answers": | |
row = pd.DataFrame( | |
{ | |
'Model': get_model(datasetname), | |
'Dataset': datasetname, | |
'SacreBLEU': [39.5], | |
'ROUGE-2': [29.8], | |
'METEOR': [63.3], | |
'BERTScore': [63.1], | |
'Accuracy': [80.1], | |
'Weighted F1': [80.3], | |
'Macro F1': [80.7], | |
} | |
) | |
if datasetname == "Legal Domain: unseen questions": | |
row = pd.DataFrame( | |
{ | |
'Model': get_model(datasetname), | |
'Dataset': datasetname, | |
'SacreBLEU': [3.2], | |
'ROUGE-2': [5.0], | |
'METEOR': [20.0], | |
'BERTScore': [14.8], | |
'Accuracy': [60.7], | |
'Weighted F1': [55.3], | |
'Macro F1': [55.4], | |
} | |
) | |
if datasetname == "Legal Domain: unseen answers": | |
row = pd.DataFrame( | |
{ | |
'Model': get_model(datasetname), | |
'Dataset': datasetname, | |
'SacreBLEU': [42.8], | |
'ROUGE-2': [43.7], | |
'METEOR': [58.2], | |
'BERTScore': [57.5], | |
'Accuracy': [81.0], | |
'Weighted F1': [80.1], | |
'Macro F1': [74.6], | |
} | |
) | |
return row | |
def load_data(): | |
df = pd.DataFrame(columns=['Model', 'Dataset', 'SacreBLEU', 'ROUGE-2', 'METEOR', 'BERTScore', 'Accuracy', 'Weighted F1', 'Macro F1']) | |
for ds in all_datasets: | |
new_row = get_rows(ds) | |
df = pd.concat([df, new_row], ignore_index=True) | |
return df | |
dataframe = load_data() | |
st.dataframe(dataframe) |