Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,27 @@
|
|
1 |
-
|
2 |
-
from
|
|
|
|
|
|
|
|
|
3 |
import torch
|
4 |
import nltk
|
5 |
from nltk.tokenize import sent_tokenize
|
6 |
from fin_readability_sustainability import BERTClass, do_predict
|
7 |
import pandas as pd
|
|
|
8 |
|
9 |
-
nltk.download('punkt')
|
10 |
|
|
|
|
|
11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
|
13 |
-
|
14 |
tokenizer_sus = RobertaTokenizer.from_pretrained('roberta-base')
|
15 |
model_sustain = BERTClass(2, "sustanability")
|
16 |
model_sustain.to(device)
|
17 |
model_sustain.load_state_dict(torch.load('sustainability_model.bin', map_location=device)['model_state_dict'])
|
18 |
|
19 |
-
|
20 |
def get_sustainability(text):
|
21 |
df = pd.DataFrame({'sentence':sent_tokenize(text)})
|
22 |
actual_predictions_sustainability = do_predict(model_sustain, tokenizer_sus, df)
|
@@ -29,12 +34,70 @@ def get_sustainability(text):
|
|
29 |
else:
|
30 |
highlight.append((sent, '-'))
|
31 |
return highlight
|
|
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
# b6 = gr.Button("Get Sustainability")
|
36 |
#b6.click(get_sustainability, inputs = text, outputs = gr.HighlightedText())
|
37 |
|
38 |
|
39 |
-
iface = gr.Interface(fn=get_sustainability, inputs="textbox", title="CONBERT",description="SUSTAINABILITY TOOL", outputs=gr.HighlightedText(), allow_flagging="never")
|
|
|
|
|
|
|
40 |
iface.launch()
|
|
|
1 |
+
from predict import run_prediction
|
2 |
+
from io import StringIO
|
3 |
+
import json
|
4 |
+
import spacy
|
5 |
+
from spacy import displacy
|
6 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification,RobertaTokenizer,pipeline
|
7 |
import torch
|
8 |
import nltk
|
9 |
from nltk.tokenize import sent_tokenize
|
10 |
from fin_readability_sustainability import BERTClass, do_predict
|
11 |
import pandas as pd
|
12 |
+
import en_core_web_sm
|
13 |
|
|
|
14 |
|
15 |
+
nlp = en_core_web_sm.load()
|
16 |
+
nltk.download('punkt')
|
17 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
|
19 |
+
#SUSTAINABILITY STARTS
|
20 |
tokenizer_sus = RobertaTokenizer.from_pretrained('roberta-base')
|
21 |
model_sustain = BERTClass(2, "sustanability")
|
22 |
model_sustain.to(device)
|
23 |
model_sustain.load_state_dict(torch.load('sustainability_model.bin', map_location=device)['model_state_dict'])
|
24 |
|
|
|
25 |
def get_sustainability(text):
|
26 |
df = pd.DataFrame({'sentence':sent_tokenize(text)})
|
27 |
actual_predictions_sustainability = do_predict(model_sustain, tokenizer_sus, df)
|
|
|
34 |
else:
|
35 |
highlight.append((sent, '-'))
|
36 |
return highlight
|
37 |
+
#SUSTAINABILITY ENDS
|
38 |
|
39 |
+
##Summarization
|
40 |
+
def summarize_text(text):
|
41 |
+
summarizer = pipeline("summarization", model="knkarthick/MEETING_SUMMARY")
|
42 |
+
resp = summarizer(text)
|
43 |
+
stext = resp[0]['summary_text']
|
44 |
+
return stext
|
45 |
|
46 |
+
##Forward Looking Statement
|
47 |
+
def fls(text):
|
48 |
+
fls_model = pipeline("text-classification", model="yiyanghkust/finbert-fls", tokenizer="yiyanghkust/finbert-fls")
|
49 |
+
results = fls_model(split_in_sentences(text))
|
50 |
+
return make_spans(text,results)
|
51 |
+
|
52 |
+
##Company Extraction
|
53 |
+
def fin_ner(text):
|
54 |
+
ner=pipeline('ner',model='Jean-Baptiste/camembert-ner-with-dates',tokenizer='Jean-Baptiste/camembert-ner-with-dates', aggregation_strategy="simple")
|
55 |
+
replaced_spans = ner(text)
|
56 |
+
return replaced_spans
|
57 |
+
|
58 |
+
|
59 |
+
#CUAD STARTS
|
60 |
+
def load_questions():
|
61 |
+
questions = []
|
62 |
+
with open('questions.txt') as f:
|
63 |
+
questions = f.readlines()
|
64 |
+
return questions
|
65 |
|
66 |
+
|
67 |
+
def load_questions_short():
|
68 |
+
questions_short = []
|
69 |
+
with open('questionshort.txt') as f:
|
70 |
+
questions_short = f.readlines()
|
71 |
+
return questions_short
|
72 |
+
|
73 |
+
def quad(query, paragraph):
|
74 |
+
questions = load_questions()
|
75 |
+
questions_short = load_questions_short()
|
76 |
+
if (not len(paragraph)==0) and not (len(question)==0):
|
77 |
+
print('getting predictions')
|
78 |
+
predictions = run_prediction([query], paragraph, 'marshmellow77/roberta-base-cuad',n_best_size=5)
|
79 |
+
answer = ""
|
80 |
+
if predictions['0'] == "":
|
81 |
+
answer = 'No answer found in document'
|
82 |
+
else:
|
83 |
+
with open("nbest.json") as jf:
|
84 |
+
data = json.load(jf)
|
85 |
+
for i in range(1):
|
86 |
+
raw_answer=data['0'][i]['text']
|
87 |
+
answer += f"Answer {i+1}: {data['0'][i]['text']} -- \n"
|
88 |
+
answer += f"Probability: {round(data['0'][i]['probability']*100,1)}%\n\n"
|
89 |
+
summarizer = pipeline("summarization", model="knkarthick/MEETING_SUMMARY")
|
90 |
+
resp = summarizer(answer)
|
91 |
+
stext = resp[0]['summary_text']
|
92 |
+
return stext,answer
|
93 |
+
|
94 |
+
|
95 |
# b6 = gr.Button("Get Sustainability")
|
96 |
#b6.click(get_sustainability, inputs = text, outputs = gr.HighlightedText())
|
97 |
|
98 |
|
99 |
+
#iface = gr.Interface(fn=get_sustainability, inputs="textbox", title="CONBERT",description="SUSTAINABILITY TOOL", outputs=gr.HighlightedText(), allow_flagging="never")
|
100 |
+
#iface.launch()
|
101 |
+
|
102 |
+
iface = gr.Interface(fn=get_sustainability, inputs=[gr.inputs.Textbox(label='SEARCH QUERY'),gr.inputs.file(label='TXT FILE')], title="CONBERT",description="SUSTAINABILITY TOOL",theme='hugging face',article='Article', outputs=[gr.outputs.Textbox(label='Answer'),gr.outputs.Textbox(label='Summary')], allow_flagging="never")
|
103 |
iface.launch()
|