Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,13 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForTokenClassification,RobertaTokenizer
|
3 |
import torch
|
|
|
|
|
4 |
from fin_readability_sustainability import BERTClass, do_predict
|
5 |
import pandas as pd
|
6 |
|
|
|
|
|
7 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
8 |
|
9 |
|
@@ -13,7 +17,6 @@ model_sustain.to(device)
|
|
13 |
model_sustain.load_state_dict(torch.load('sustainability_model.bin', map_location=device)['model_state_dict'])
|
14 |
|
15 |
|
16 |
-
from nltk.tokenize import sent_tokenize
|
17 |
def get_sustainability(text):
|
18 |
df = pd.DataFrame({'sentence':sent_tokenize(text)})
|
19 |
actual_predictions_sustainability = do_predict(model_sustain, tokenizer_sus, df)
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForTokenClassification,RobertaTokenizer
|
3 |
import torch
|
4 |
+
import nltk
|
5 |
+
from nltk.tokenize import sent_tokenize
|
6 |
from fin_readability_sustainability import BERTClass, do_predict
|
7 |
import pandas as pd
|
8 |
|
9 |
+
nltk.download('punkt')
|
10 |
+
|
11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
|
13 |
|
|
|
17 |
model_sustain.load_state_dict(torch.load('sustainability_model.bin', map_location=device)['model_state_dict'])
|
18 |
|
19 |
|
|
|
20 |
def get_sustainability(text):
|
21 |
df = pd.DataFrame({'sentence':sent_tokenize(text)})
|
22 |
actual_predictions_sustainability = do_predict(model_sustain, tokenizer_sus, df)
|