Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification,RobertaTokenizer
|
3 |
+
import torch
|
4 |
+
from fin_readability_sustainability import BERTClass, do_predict
|
5 |
+
|
6 |
+
|
7 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
8 |
+
|
9 |
+
|
10 |
+
tokenizer_sus = RobertaTokenizer.from_pretrained('roberta-base')
|
11 |
+
model_sustain = BERTClass(2, "sustanability")
|
12 |
+
model_sustain.to(device)
|
13 |
+
model_sustain.load_state_dict(torch.load('sustainability_model.bin', map_location=device)['model_state_dict'])
|
14 |
+
|
15 |
+
|
16 |
+
from nltk.tokenize import sent_tokenize
|
17 |
+
def get_sustainability(text):
|
18 |
+
df = pd.DataFrame({'sentence':sent_tokenize(text)})
|
19 |
+
actual_predictions_sustainability = do_predict(model_sustain, tokenizer_sus, df)
|
20 |
+
highlight = []
|
21 |
+
for sent, prob in zip(df['sentence'].values, actual_predictions_sustainability[1]):
|
22 |
+
if prob>=4.384316:
|
23 |
+
highlight.append((sent, 'non-sustainable'))
|
24 |
+
elif prob<=1.423736:
|
25 |
+
highlight.append((sent, 'sustainable'))
|
26 |
+
else:
|
27 |
+
highlight.append((sent, '-'))
|
28 |
+
return highlight
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
b6 = gr.Button("Get Sustainability")
|
33 |
+
b6.click(get_sustainability, inputs = text, outputs = gr.HighlightedText())
|
34 |
+
|
35 |
+
|
36 |
+
iface = gr.Interface(fn=get_sustainability, inputs=gr.inputs.Textbox(lines=5, placeholder="Enter Financial Text here..."), title="CONBERT",description="SUSTAINABILITY TOOL", outputs=gr.HighlightedText(), allow_flagging="never")
|
37 |
+
iface.launch()
|