from predict import run_prediction from io import StringIO import json import gradio as gr import spacy from spacy import displacy from transformers import AutoTokenizer, AutoModelForTokenClassification,RobertaTokenizer,pipeline import torch import nltk from nltk.tokenize import sent_tokenize from fin_readability_sustainability import BERTClass, do_predict import pandas as pd import en_core_web_sm nlp = en_core_web_sm.load() nltk.download('punkt') device = torch.device("cuda" if torch.cuda.is_available() else "cpu") #SUSTAINABILITY STARTS tokenizer_sus = RobertaTokenizer.from_pretrained('roberta-base') model_sustain = BERTClass(2, "sustanability") model_sustain.to(device) model_sustain.load_state_dict(torch.load('sustainability_model.bin', map_location=device)['model_state_dict']) def get_sustainability(text): df = pd.DataFrame({'sentence':sent_tokenize(text)}) actual_predictions_sustainability = do_predict(model_sustain, tokenizer_sus, df) highlight = [] for sent, prob in zip(df['sentence'].values, actual_predictions_sustainability[1]): if prob>=4.384316: highlight.append((sent, 'non-sustainable')) elif prob<=1.423736: highlight.append((sent, 'sustainable')) else: highlight.append((sent, '-')) return highlight #SUSTAINABILITY ENDS ##Summarization def summarize_text(text): summarizer = pipeline("summarization", model="knkarthick/MEETING_SUMMARY") resp = summarizer(text) stext = resp[0]['summary_text'] return stext ##Forward Looking Statement def fls(text): fls_model = pipeline("text-classification", model="yiyanghkust/finbert-fls", tokenizer="yiyanghkust/finbert-fls") results = fls_model(split_in_sentences(text)) return make_spans(text,results) ##Company Extraction def fin_ner(text): ner=pipeline('ner',model='Jean-Baptiste/camembert-ner-with-dates',tokenizer='Jean-Baptiste/camembert-ner-with-dates', aggregation_strategy="simple") replaced_spans = ner(text) return replaced_spans #CUAD STARTS def load_questions(): questions = [] with open('questions.txt') as f: questions = f.readlines() return questions def load_questions_short(): questions_short = [] with open('questionshort.txt') as f: questions_short = f.readlines() return questions_short def quad(query,file): with open(file.name) as f: paragraph = f.read() questions = load_questions() questions_short = load_questions_short() if (not len(paragraph)==0) and not (len(query)==0): print('getting predictions') predictions = run_prediction([query], paragraph, 'marshmellow77/roberta-base-cuad',n_best_size=5) answer = "" if predictions['0'] == "": answer = 'No answer found in document' else: with open("nbest.json") as jf: data = json.load(jf) for i in range(1): raw_answer=data['0'][i]['text'] answer += f"Answer {i+1}: {data['0'][i]['text']} -- \n" answer += f"Probability: {round(data['0'][i]['probability']*100,1)}%\n\n" summarizer = pipeline("summarization", model="knkarthick/MEETING_SUMMARY") resp = summarizer(answer) stext = resp[0]['summary_text'] return stext,answer # b6 = gr.Button("Get Sustainability") #b6.click(get_sustainability, inputs = text, outputs = gr.HighlightedText()) #iface = gr.Interface(fn=get_sustainability, inputs="textbox", title="CONBERT",description="SUSTAINABILITY TOOL", outputs=gr.HighlightedText(), allow_flagging="never") #iface.launch() iface = gr.Interface(fn=quad, inputs=[gr.inputs.Textbox(label='SEARCH QUERY'),gr.inputs.File(label='TXT FILE')], title="CONBERT",description="SUSTAINABILITY TOOL",article='Article', outputs=[gr.outputs.Textbox(label='Answer'),gr.outputs.Textbox(label='Summary')], allow_flagging="never") iface.launch()