Spaces:
Sleeping
Sleeping
File size: 2,298 Bytes
a7932b8 b432dd9 05ba9f1 b432dd9 10e4113 b432dd9 10e4113 b432dd9 302823e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
import os
import gradio as gr
from PyPDF2 import PdfReader
import requests
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# Get the Hugging Face API token
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
def summarize_text(text, instructions):
API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct"
headers = {"Authorization": f"Bearer {HUGGINGFACE_TOKEN}"}
payload = {
"inputs": f"{instructions}\n\nText to summarize:\n{text}",
"parameters": {"max_length": 500}
}
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()[0]["generated_text"]
def process_pdf(pdf_file, chunk_instructions, final_instructions):
# Read PDF
reader = PdfReader(pdf_file)
text = ""
for page in reader.pages:
text += page.extract_text() + "\n\n"
# Chunk the text (simple splitting by pages for this example)
chunks = text.split("\n\n")
# Agent 1: Summarize each chunk
agent1_summaries = []
for chunk in chunks:
summary = summarize_text(chunk, chunk_instructions)
agent1_summaries.append(summary)
# Concatenate Agent 1 summaries
concatenated_summary = "\n\n".join(agent1_summaries)
# Agent 2: Final summarization
final_summary = summarize_text(concatenated_summary, final_instructions)
return final_summary
def pdf_summarizer(pdf_file, chunk_instructions, final_instructions):
if pdf_file is None:
return "Please upload a PDF file."
try:
summary = process_pdf(pdf_file.name, chunk_instructions, final_instructions)
return summary
except Exception as e:
return f"An error occurred: {str(e)}"
# Gradio interface
iface = gr.Interface(
fn=pdf_summarizer,
inputs=[
gr.File(label="Upload PDF"),
gr.Textbox(label="Chunk Instructions", placeholder="Instructions for summarizing each chunk"),
gr.Textbox(label="Final Instructions", placeholder="Instructions for final summarization")
],
outputs=gr.Textbox(label="Summary"),
title="PDF Earnings Summary Generator",
description="Upload a PDF of an earnings summary or transcript to generate a concise summary."
)
iface.launch() |