import os import json import re import gradio as gr import requests from duckduckgo_search import DDGS from typing import List from pydantic import BaseModel, Field from tempfile import NamedTemporaryFile from langchain_community.vectorstores import FAISS from langchain_community.document_loaders import PyPDFLoader from langchain_community.embeddings import HuggingFaceEmbeddings from llama_parse import LlamaParse from langchain_core.documents import Document from huggingface_hub import InferenceClient import inspect import logging import shutil # Set up basic configuration for logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') # Environment variables and configurations huggingface_token = os.environ.get("HUGGINGFACE_TOKEN") llama_cloud_api_key = os.environ.get("LLAMA_CLOUD_API_KEY") ACCOUNT_ID = os.environ.get("CLOUDFARE_ACCOUNT_ID") API_TOKEN = os.environ.get("CLOUDFLARE_AUTH_TOKEN") API_BASE_URL = "https://api.cloudflare.com/client/v4/accounts/a17f03e0f049ccae0c15cdcf3b9737ce/ai/run/" print(f"ACCOUNT_ID: {ACCOUNT_ID}") print(f"CLOUDFLARE_AUTH_TOKEN: {API_TOKEN[:5]}..." if API_TOKEN else "Not set") MODELS = [ "mistralai/Mistral-7B-Instruct-v0.3", "mistralai/Mixtral-8x7B-Instruct-v0.1", "@cf/meta/llama-3.1-8b-instruct", "mistralai/Mistral-Nemo-Instruct-2407" ] # Initialize LlamaParse llama_parser = LlamaParse( api_key=llama_cloud_api_key, result_type="markdown", num_workers=4, verbose=True, language="en", ) def load_document(file: NamedTemporaryFile, parser: str = "llamaparse") -> List[Document]: """Loads and splits the document into pages.""" if parser == "pypdf": loader = PyPDFLoader(file.name) return loader.load_and_split() elif parser == "llamaparse": try: documents = llama_parser.load_data(file.name) return [Document(page_content=doc.text, metadata={"source": file.name}) for doc in documents] except Exception as e: print(f"Error using Llama Parse: {str(e)}") print("Falling back to PyPDF parser") loader = PyPDFLoader(file.name) return loader.load_and_split() else: raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.") def get_embeddings(): return HuggingFaceEmbeddings(model_name="sentence-transformers/stsb-roberta-large") # Add this at the beginning of your script, after imports DOCUMENTS_FILE = "uploaded_documents.json" def load_documents(): if os.path.exists(DOCUMENTS_FILE): with open(DOCUMENTS_FILE, "r") as f: return json.load(f) return [] def save_documents(documents): with open(DOCUMENTS_FILE, "w") as f: json.dump(documents, f) # Replace the global uploaded_documents with this uploaded_documents = load_documents() # Modify the update_vectors function def update_vectors(files, parser): global uploaded_documents logging.info(f"Entering update_vectors with {len(files)} files and parser: {parser}") if not files: logging.warning("No files provided for update_vectors") return "Please upload at least one PDF file.", display_documents() embed = get_embeddings() total_chunks = 0 all_data = [] for file in files: logging.info(f"Processing file: {file.name}") try: data = load_document(file, parser) if not data: logging.warning(f"No chunks loaded from {file.name}") continue logging.info(f"Loaded {len(data)} chunks from {file.name}") all_data.extend(data) total_chunks += len(data) if not any(doc["name"] == file.name for doc in uploaded_documents): uploaded_documents.append({"name": file.name, "selected": True}) logging.info(f"Added new document to uploaded_documents: {file.name}") else: logging.info(f"Document already exists in uploaded_documents: {file.name}") except Exception as e: logging.error(f"Error processing file {file.name}: {str(e)}") logging.info(f"Total chunks processed: {total_chunks}") if not all_data: logging.warning("No valid data extracted from uploaded files") return "No valid data could be extracted from the uploaded files. Please check the file contents and try again.", display_documents() try: if os.path.exists("faiss_database"): logging.info("Updating existing FAISS database") database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) database.add_documents(all_data) else: logging.info("Creating new FAISS database") database = FAISS.from_documents(all_data, embed) database.save_local("faiss_database") logging.info("FAISS database saved") except Exception as e: logging.error(f"Error updating FAISS database: {str(e)}") return f"Error updating vector store: {str(e)}", display_documents() # Save the updated list of documents save_documents(uploaded_documents) return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}.", display_documents() def delete_documents(selected_docs): global uploaded_documents if not selected_docs: return "No documents selected for deletion.", display_documents() embed = get_embeddings() database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) deleted_docs = [] docs_to_keep = [] for doc in database.docstore._dict.values(): if doc.metadata.get("source") not in selected_docs: docs_to_keep.append(doc) else: deleted_docs.append(doc.metadata.get("source", "Unknown")) # Print debugging information logging.info(f"Total documents before deletion: {len(database.docstore._dict)}") logging.info(f"Documents to keep: {len(docs_to_keep)}") logging.info(f"Documents to delete: {len(deleted_docs)}") if not docs_to_keep: # If all documents are deleted, remove the FAISS database directory if os.path.exists("faiss_database"): shutil.rmtree("faiss_database") logging.info("All documents deleted. Removed FAISS database directory.") else: # Create new FAISS index with remaining documents new_database = FAISS.from_documents(docs_to_keep, embed) new_database.save_local("faiss_database") logging.info(f"Created new FAISS index with {len(docs_to_keep)} documents.") # Update uploaded_documents list uploaded_documents = [doc for doc in uploaded_documents if doc["name"] not in deleted_docs] save_documents(uploaded_documents) return f"Deleted documents: {', '.join(deleted_docs)}", display_documents() def generate_chunked_response(prompt, model, max_tokens=10000, num_calls=3, temperature=0.2, should_stop=False): print(f"Starting generate_chunked_response with {num_calls} calls") full_response = "" messages = [{"role": "user", "content": prompt}] if model == "@cf/meta/llama-3.1-8b-instruct": # Cloudflare API for i in range(num_calls): print(f"Starting Cloudflare API call {i+1}") if should_stop: print("Stop clicked, breaking loop") break try: response = requests.post( f"https://api.cloudflare.com/client/v4/accounts/{ACCOUNT_ID}/ai/run/@cf/meta/llama-3.1-8b-instruct", headers={"Authorization": f"Bearer {API_TOKEN}"}, json={ "stream": true, "messages": [ {"role": "system", "content": "You are a friendly assistant"}, {"role": "user", "content": prompt} ], "max_tokens": max_tokens, "temperature": temperature }, stream=true ) for line in response.iter_lines(): if should_stop: print("Stop clicked during streaming, breaking") break if line: try: json_data = json.loads(line.decode('utf-8').split('data: ')[1]) chunk = json_data['response'] full_response += chunk except json.JSONDecodeError: continue print(f"Cloudflare API call {i+1} completed") except Exception as e: print(f"Error in generating response from Cloudflare: {str(e)}") else: # Original Hugging Face API logic client = InferenceClient(model, token=huggingface_token) for i in range(num_calls): print(f"Starting Hugging Face API call {i+1}") if should_stop: print("Stop clicked, breaking loop") break try: for message in client.chat_completion( messages=messages, max_tokens=max_tokens, temperature=temperature, stream=True, ): if should_stop: print("Stop clicked during streaming, breaking") break if message.choices and message.choices[0].delta and message.choices[0].delta.content: chunk = message.choices[0].delta.content full_response += chunk print(f"Hugging Face API call {i+1} completed") except Exception as e: print(f"Error in generating response from Hugging Face: {str(e)}") # Clean up the response clean_response = re.sub(r'\[INST\].*?\[/INST\]\s*', '', full_response, flags=re.DOTALL) clean_response = clean_response.replace("Using the following context:", "").strip() clean_response = clean_response.replace("Using the following context from the PDF documents:", "").strip() # Remove duplicate paragraphs and sentences paragraphs = clean_response.split('\n\n') unique_paragraphs = [] for paragraph in paragraphs: if paragraph not in unique_paragraphs: sentences = paragraph.split('. ') unique_sentences = [] for sentence in sentences: if sentence not in unique_sentences: unique_sentences.append(sentence) unique_paragraphs.append('. '.join(unique_sentences)) final_response = '\n\n'.join(unique_paragraphs) print(f"Final clean response: {final_response[:100]}...") return final_response def duckduckgo_search(query): with DDGS() as ddgs: results = ddgs.text(query, max_results=5) return results class CitingSources(BaseModel): sources: List[str] = Field( ..., description="List of sources to cite. Should be an URL of the source." ) def chatbot_interface(message, history, use_web_search, model, temperature, num_calls): if not message.strip(): return "", history history = history + [(message, "")] try: for response in respond(message, history, model, temperature, num_calls, use_web_search): history[-1] = (message, response) yield history except gr.CancelledError: yield history except Exception as e: logging.error(f"Unexpected error in chatbot_interface: {str(e)}") history[-1] = (message, f"An unexpected error occurred: {str(e)}") yield history def retry_last_response(history, use_web_search, model, temperature, num_calls): if not history: return history last_user_msg = history[-1][0] history = history[:-1] # Remove the last response return chatbot_interface(last_user_msg, history, use_web_search, model, temperature, num_calls) def respond(message, history, model, temperature, num_calls, use_web_search, selected_docs): logging.info(f"User Query: {message}") logging.info(f"Model Used: {model}") logging.info(f"Search Type: {'Web Search' if use_web_search else 'PDF Search'}") logging.info(f"Selected Documents: {selected_docs}") try: if use_web_search: for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature): response = f"{main_content}\n\n{sources}" first_line = response.split('\n')[0] if response else '' # logging.info(f"Generated Response (first line): {first_line}") yield response else: embed = get_embeddings() if os.path.exists("faiss_database"): database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) retriever = database.as_retriever() # Filter relevant documents based on user selection all_relevant_docs = retriever.get_relevant_documents(message) relevant_docs = [doc for doc in all_relevant_docs if doc.metadata["source"] in selected_docs] if not relevant_docs: yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query." return context_str = "\n".join([doc.page_content for doc in relevant_docs]) else: context_str = "No documents available." yield "No documents available. Please upload PDF documents to answer questions." return if model == "@cf/meta/llama-3.1-8b-instruct": # Use Cloudflare API for partial_response in get_response_from_cloudflare(prompt="", context=context_str, query=message, num_calls=num_calls, temperature=temperature, search_type="pdf"): first_line = partial_response.split('\n')[0] if partial_response else '' logging.info(f"Generated Response (first line): {first_line}") yield partial_response else: # Use Hugging Face API for partial_response in get_response_from_pdf(message, model, selected_docs, num_calls=num_calls, temperature=temperature): first_line = partial_response.split('\n')[0] if partial_response else '' logging.info(f"Generated Response (first line): {first_line}") yield partial_response except Exception as e: logging.error(f"Error with {model}: {str(e)}") if "microsoft/Phi-3-mini-4k-instruct" in model: logging.info("Falling back to Mistral model due to Phi-3 error") fallback_model = "mistralai/Mistral-7B-Instruct-v0.3" yield from respond(message, history, fallback_model, temperature, num_calls, use_web_search, selected_docs) else: yield f"An error occurred with the {model} model: {str(e)}. Please try again or select a different model." logging.basicConfig(level=logging.DEBUG) def get_response_from_cloudflare(prompt, context, query, num_calls=3, temperature=0.2, search_type="pdf"): headers = { "Authorization": f"Bearer {API_TOKEN}", "Content-Type": "application/json" } model = "@cf/meta/llama-3.1-8b-instruct" if search_type == "pdf": instruction = f"""Using the following context from the PDF documents: {context} Write a detailed and complete response that answers the following user question: '{query}'""" else: # web search instruction = f"""Using the following context: {context} Write a detailed and complete research document that fulfills the following user request: '{query}' After writing the document, please provide a list of sources used in your response.""" inputs = [ {"role": "system", "content": instruction}, {"role": "user", "content": query} ] payload = { "messages": inputs, "stream": True, "temperature": temperature, "max_tokens": 32000 } full_response = "" for i in range(num_calls): try: with requests.post(f"{API_BASE_URL}{model}", headers=headers, json=payload, stream=True) as response: if response.status_code == 200: for line in response.iter_lines(): if line: try: json_response = json.loads(line.decode('utf-8').split('data: ')[1]) if 'response' in json_response: chunk = json_response['response'] full_response += chunk yield full_response except (json.JSONDecodeError, IndexError) as e: logging.error(f"Error parsing streaming response: {str(e)}") continue else: logging.error(f"HTTP Error: {response.status_code}, Response: {response.text}") yield f"I apologize, but I encountered an HTTP error: {response.status_code}. Please try again later." except Exception as e: logging.error(f"Error in generating response from Cloudflare: {str(e)}") yield f"I apologize, but an error occurred: {str(e)}. Please try again later." if not full_response: yield "I apologize, but I couldn't generate a response at this time. Please try again later." def get_response_with_search(query, model, num_calls=3, temperature=0.2): search_results = duckduckgo_search(query) context = "\n".join(f"{result['title']}\n{result['body']}\nSource: {result['href']}\n" for result in search_results if 'body' in result) prompt = f"""Using the following context: {context} Write a detailed and complete research document that fulfills the following user request: '{query}' After writing the document, please provide a list of sources used in your response.""" if model == "@cf/meta/llama-3.1-8b-instruct": # Use Cloudflare API for response in get_response_from_cloudflare(prompt="", context=context, query=query, num_calls=num_calls, temperature=temperature, search_type="web"): yield response, "" # Yield streaming response without sources else: # Use Hugging Face API client = InferenceClient(model, token=huggingface_token) main_content = "" for i in range(num_calls): for message in client.chat_completion( messages=[{"role": "user", "content": prompt}], max_tokens=10000, temperature=temperature, stream=True, ): if message.choices and message.choices[0].delta and message.choices[0].delta.content: chunk = message.choices[0].delta.content main_content += chunk yield main_content, "" # Yield partial main content without sources def get_response_from_pdf(query, model, selected_docs, num_calls=3, temperature=0.2): logging.info(f"Entering get_response_from_pdf with query: {query}, model: {model}, selected_docs: {selected_docs}") embed = get_embeddings() if os.path.exists("faiss_database"): logging.info("Loading FAISS database") database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) else: logging.warning("No FAISS database found") yield "No documents available. Please upload PDF documents to answer questions." return retriever = database.as_retriever() logging.info(f"Retrieving relevant documents for query: {query}") relevant_docs = retriever.get_relevant_documents(query) logging.info(f"Number of relevant documents retrieved: {len(relevant_docs)}") # Filter relevant_docs based on selected documents filtered_docs = [doc for doc in relevant_docs if doc.metadata["source"] in selected_docs] logging.info(f"Number of filtered documents: {len(filtered_docs)}") if not filtered_docs: logging.warning(f"No relevant information found in the selected documents: {selected_docs}") yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query." return for doc in filtered_docs: logging.info(f"Document source: {doc.metadata['source']}") logging.info(f"Document content preview: {doc.page_content[:100]}...") # Log first 100 characters of each document context_str = "\n".join([doc.page_content for doc in filtered_docs]) logging.info(f"Total context length: {len(context_str)}") if model == "@cf/meta/llama-3.1-8b-instruct": logging.info("Using Cloudflare API") # Use Cloudflare API with the retrieved context for response in get_response_from_cloudflare(prompt="", context=context_str, query=query, num_calls=num_calls, temperature=temperature, search_type="pdf"): yield response else: logging.info("Using Hugging Face API") # Use Hugging Face API prompt = f"""Using the following context from the PDF documents: {context_str} Write a detailed and complete response that answers the following user question: '{query}'""" client = InferenceClient(model, token=huggingface_token) response = "" for i in range(num_calls): logging.info(f"API call {i+1}/{num_calls}") for message in client.chat_completion( messages=[{"role": "user", "content": prompt}], max_tokens=10000, temperature=temperature, stream=True, ): if message.choices and message.choices[0].delta and message.choices[0].delta.content: chunk = message.choices[0].delta.content response += chunk yield response # Yield partial response logging.info("Finished generating response") def vote(data: gr.LikeData): if data.liked: print(f"You upvoted this response: {data.value}") else: print(f"You downvoted this response: {data.value}") css = """ /* Fine-tune chatbox size */ .chatbot-container { height: 600px !important; width: 100% !important; } .chatbot-container > div { height: 100%; width: 100%; } """ uploaded_documents = [] def display_documents(): return gr.CheckboxGroup( choices=[doc["name"] for doc in uploaded_documents], value=[doc["name"] for doc in uploaded_documents if doc["selected"]], label="Select documents to query or delete" ) def initial_conversation(): return [ (None, "Welcome! I'm your AI assistant for web search and PDF analysis. Here's how you can use me:\n\n" "1. Set the toggle for Web Search and PDF Search from the checkbox in Additional Inputs drop down window\n" "2. Use web search to find information\n" "3. Upload the documents and ask questions about uploaded PDF documents by selecting your respective document\n" "4. For any queries feel free to reach out @desai.shreyas94@gmail.com or discord - shreyas094\n\n" "To get started, upload some PDFs or ask me a question!") ] # Add this new function def refresh_documents(): global uploaded_documents uploaded_documents = load_documents() return display_documents() # Define the checkbox outside the demo block document_selector = gr.CheckboxGroup(label="Select documents to query") use_web_search = gr.Checkbox(label="Use Web Search", value=True) custom_placeholder = "Ask a question (Note: You can toggle between Web Search and PDF Chat in Additional Inputs below)" demo = gr.ChatInterface( respond, additional_inputs=[ gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[3]), gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"), gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"), use_web_search, document_selector ], title="AI-powered Web Search and PDF Chat Assistant", description="Chat with your PDFs or use web search to answer questions. Toggle between Web Search and PDF Chat in Additional Inputs below.", theme=gr.themes.Soft( primary_hue="orange", secondary_hue="amber", neutral_hue="gray", font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"] ).set( body_background_fill_dark="#0c0505", block_background_fill_dark="#0c0505", block_border_width="1px", block_title_background_fill_dark="#1b0f0f", input_background_fill_dark="#140b0b", button_secondary_background_fill_dark="#140b0b", border_color_accent_dark="#1b0f0f", border_color_primary_dark="#1b0f0f", background_fill_secondary_dark="#0c0505", color_accent_soft_dark="transparent", code_background_fill_dark="#140b0b" ), css=css, examples=[ ["Tell me about the contents of the uploaded PDFs."], ["What are the main topics discussed in the documents?"], ["Can you summarize the key points from the PDFs?"] ], cache_examples=False, analytics_enabled=False, textbox=gr.Textbox(placeholder=custom_placeholder, container=False, scale=7), chatbot = gr.Chatbot( show_copy_button=True, likeable=True, layout="bubble", height=400, value=initial_conversation() ) ) # Add file upload functionality with demo: gr.Markdown("## Upload and Manage PDF Documents") with gr.Row(): file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"]) parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="llamaparse") update_button = gr.Button("Upload Document") refresh_button = gr.Button("Refresh Document List") update_output = gr.Textbox(label="Update Status") delete_button = gr.Button("Delete Selected Documents") # Update both the output text and the document selector update_button.click(update_vectors, inputs=[file_input, parser_dropdown], outputs=[update_output, document_selector]) # Add the refresh button functionality refresh_button.click(refresh_documents, inputs=[], outputs=[document_selector]) # Add the delete button functionality delete_button.click(delete_documents, inputs=[document_selector], outputs=[update_output, document_selector]) gr.Markdown( """ ## How to use 1. Upload PDF documents using the file input at the top. 2. Select the PDF parser (pypdf or llamaparse) and click "Upload Document" to update the vector store. 3. Select the documents you want to query using the checkboxes. 4. Ask questions in the chat interface. 5. Toggle "Use Web Search" to switch between PDF chat and web search. 6. Adjust Temperature and Number of API Calls to fine-tune the response generation. 7. Use the provided examples or ask your own questions. """ ) if __name__ == "__main__": demo.launch(share=True)