from huggingface_hub import InferenceClient import gradio as gr client = InferenceClient( "google/gemma-7b-it" ) def format_prompt(message, history): prompt = "" if history: #userWhat is recession?model for user_prompt, bot_response in history: prompt += f"user{user_prompt}" prompt += f"model{bot_response}" prompt += f"user{message}model" return prompt def generate( prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, ): if not history: history = [] hist_len=0 if history: hist_len=len(history) print(hist_len) temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) formatted_prompt = format_prompt(prompt, history) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text yield output return output additional_inputs=[ gr.Slider( label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ), gr.Slider( label="Max new tokens", value=512, minimum=0, maximum=1048, step=64, interactive=True, info="The maximum numbers of new tokens", ), gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ), gr.Slider( label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", ) ] # Create a Chatbot object with the desired height chatbot = gr.Chatbot(height=450, layout="bubble") with gr.Blocks() as demo: gr.HTML("

🤖 Google-Gemma-7B-Chat 💬

") gr.ChatInterface( generate, chatbot=chatbot, # Use the created Chatbot object additional_inputs=additional_inputs, examples=[["What is the meaning of life?"], ["Tell me something about Mt Fuji."]], ) demo.queue().launch(debug=True)