Spaces:
Runtime error
Runtime error
# Commented out IPython magic to ensure Python compatibility. | |
# %%shell | |
# pip install -q langchain_community langchain_huggingface faiss-cpu gradio openai google-generativeai langchain-google-genai torch torchvision torchaudio youtokentome pypdf accelerate | |
# Commented out IPython magic to ensure Python compatibility. | |
# %%capture | |
# %%shell | |
# | |
# # Install the custom version of NeMo by AI4Bharat | |
# wget https://indic-asr-public.objectstore.e2enetworks.net/ai4b_nemo.zip | |
# | |
# unzip -q /content/ai4b_nemo.zip && cd NeMo | |
# bash reinstall.sh | |
# | |
# cd .. | |
# | |
import os | |
import subprocess | |
import sys | |
print("CURRENT WORKING DIRECTORY:",os.getcwd()) | |
setup_flag = 'setup_complete.flag' | |
if not os.path.exists(setup_flag): | |
os.system('wget https://indic-asr-public.objectstore.e2enetworks.net/ai4b_nemo.zip') | |
os.system('unzip -q ai4b_nemo.zip') | |
os.chdir('NeMo') | |
subprocess.run([sys.executable, '-m', 'pip', 'install', '-e', '.']) | |
os.system('bash reinstall.sh') | |
os.chdir('..') | |
with open(setup_flag, 'w') as f: | |
f.write('Setup complete') | |
os.execv(sys.executable, ['python'] + sys.argv) | |
# Commented out IPython magic to ensure Python compatibility. | |
# %%capture | |
# %%shell | |
# | |
# git clone -q https://github.com/VarunGumma/IndicTransTokenizer | |
# cd IndicTransTokenizer | |
# pip install -q --editable ./ | |
# cd .. | |
# | |
# Commented out IPython magic to ensure Python compatibility. | |
# %%capture | |
# %%shell | |
# | |
# apt-get install libsndfile1-dev ffmpeg | |
# | |
# git clone https://github.com/gokulkarthik/TTS | |
# cd TTS | |
# | |
# pip3 install -e .[all] | |
# pip3 install -r requirements.txt | |
# | |
# cd .. | |
# | |
"""## **Restart session** | |
""" | |
# Commented out IPython magic to ensure Python compatibility. | |
# %%capture | |
# !pip install gradio | |
# Commented out IPython magic to ensure Python compatibility. | |
# %%capture | |
# | |
# # INFO: If you're unable to import these libraries, just rerun this cell again. | |
# | |
import gradio as gr | |
from torch import cuda, inference_mode | |
import nemo.collections.asr as nemo_asr | |
from IndicTransTokenizer import IndicProcessor | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
DEVICE = "cuda" if cuda.is_available() else "cpu" | |
print(f"Using device: {DEVICE}") | |
import os | |
from langchain_community.vectorstores import FAISS | |
from langchain_huggingface import HuggingFaceEmbeddings | |
from langchain_community.document_loaders import PyPDFLoader | |
"""### Load and convert PDF data into vectorDB""" | |
pm_kisan_doc = "/content/PM-KISANOperationalGuidelines(English).pdf" | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=600, | |
chunk_overlap=100 | |
) | |
loader = PyPDFLoader(pm_kisan_doc) | |
pages = loader.load_and_split(text_splitter=text_splitter) | |
pages_chunks = [page.page_content for page in pages] | |
print(f"Generated {len(pages_chunks)} chunks of {pm_kisan_doc}") | |
pages_chunks[8] | |
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") | |
faiss = FAISS.from_texts(pages_chunks, embeddings) | |
"""### Querying the vectorDB""" | |
# Test query | |
result = faiss.similarity_search("what are the benefits of PM kisan yojna", k=3) | |
# This returns the most relevant doc similar to the query | |
print(result[0].page_content) | |
Result_with_score = faiss.similarity_search_with_score("what are the benefits of PM kisan yojna", k=3) | |
Result_with_score[0] | |
os.environ['GEMINI_API_KEY'] = userdata.get('GEMINI_API_KEY') | |
import google.generativeai as genai | |
def get_gemini_output(prompt, temperature=0.6): | |
genai.configure(api_key= os.environ['GEMINI_API_KEY']) | |
model = genai.GenerativeModel(model_name='gemini-pro') | |
answer = model.generate_content(prompt, | |
generation_config=genai.types.GenerationConfig( | |
temperature=0.6)) | |
return answer.text | |
"""## Build an end-to-end RAG powered Voice Assistant | |
""" | |
ip = IndicProcessor(inference=True) | |
# Commented out IPython magic to ensure Python compatibility. | |
# # %%capture | |
en2indic_tokenizer = AutoTokenizer.from_pretrained("ai4bharat/indictrans2-en-indic-dist-200M", trust_remote_code=True) | |
en2indic_model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/indictrans2-en-indic-dist-200M", trust_remote_code=True) | |
# Commented out IPython magic to ensure Python compatibility. | |
# # %%capture | |
indic2en_tokenizer = AutoTokenizer.from_pretrained("ai4bharat/indictrans2-indic-en-dist-200M", trust_remote_code=True) | |
indic2en_model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/indictrans2-indic-en-dist-200M", trust_remote_code=True) | |
model_tokenizer_config = { | |
"en2indic": { | |
"tokenizer": en2indic_tokenizer, | |
"model": en2indic_model, | |
}, | |
"indic2en": { | |
"tokenizer": indic2en_tokenizer, | |
"model": indic2en_model, | |
} | |
} | |
def indic_translate(src_lang: str, tgt_lang: str, sents_to_translate: list): | |
lang_map = { | |
"punjabi": "pan_Guru", | |
"bengali": "ben_Beng", | |
"malayalam": "mal_Mlym", | |
"marathi": "mar_Deva", | |
"tamil": "tam_Taml", | |
"gujarati": "guj_Gujr", | |
"telugu": "tel_Telu", | |
"hindi": "hin_Deva", | |
"kannada": "kan_Knda", | |
"odia": "ory_Orya", | |
"english": "eng_Latn" | |
} | |
src_lang = lang_map[src_lang] | |
tgt_lang = lang_map[tgt_lang] | |
if src_lang == "eng_Latn": | |
tokenizer = model_tokenizer_config["en2indic"]["tokenizer"] | |
model = model_tokenizer_config["en2indic"]["model"] | |
print(f"Using en2indic, src_lang: {src_lang}, tgt_lang: {tgt_lang}") | |
else: | |
tokenizer = model_tokenizer_config["indic2en"]["tokenizer"] | |
model = model_tokenizer_config["indic2en"]["model"] | |
print(f"Using indic2en, src_lang: {src_lang}, tgt_lang: {tgt_lang}") | |
batch = ip.preprocess_batch(sents_to_translate, src_lang=src_lang, tgt_lang=tgt_lang, show_progress_bar=False) | |
batch = tokenizer(batch, padding="longest", truncation=True, max_length=256, return_tensors="pt") | |
with inference_mode(): | |
print("Generating...") | |
outputs = model.generate(**batch, num_beams=5, num_return_sequences=1, max_length=256) | |
with tokenizer.as_target_tokenizer(): | |
outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True, clean_up_tokenization_spaces=True) | |
if tgt_lang != "en_Latn": | |
print(f"Postprocessing for {tgt_lang}") | |
outputs = ip.postprocess_batch(outputs, lang=tgt_lang) | |
return outputs | |
def download_ai4b_tts_model(lang: str): | |
lang_map = { | |
"odia": "or", | |
"hindi": "hi", | |
"tamil": "ta", | |
"telugu": "te", | |
"punjabi": "pa", | |
"kannada": "kn", | |
"bengali": "bn", | |
"marathi": "mr", | |
"gujarati": "gu", | |
"malayalam": "ml", | |
} | |
selected_lang = lang_map[lang] | |
download_path = f"/{selected_lang}.zip" | |
if os.path.exists(download_path): | |
print(f"IndicTTS Model for {lang} already exists.") | |
def run_tts(text, tts_lang): | |
lang_map = { | |
"odia": "or", | |
"hindi": "hi", | |
"tamil": "ta", | |
"telugu": "te", | |
"punjabi": "pa", | |
"kannada": "kn", | |
"bengali": "bn", | |
"marathi": "mr", | |
"gujarati": "gu", | |
"malayalam": "ml", | |
} | |
download_ai4b_tts_model(lang=tts_lang) | |
tts_lang = lang_map[tts_lang] | |
print(f"Lang code: {tts_lang}") | |
tts_command = f'python3 -m TTS.bin.synthesize --text "{text}" \ | |
--model_path /models/v1/{tts_lang}/fastpitch/best_model.pth \ | |
--config_path /models/v1/{tts_lang}/fastpitch/config.json \ | |
--vocoder_path /models/v1/{tts_lang}/hifigan/best_model.pth \ | |
--vocoder_config_path /models/v1/{tts_lang}/hifigan/config.json \ | |
--speakers_file_path /models/v1/{tts_lang}/fastpitch/speakers.pth \ | |
--out_path /tts_output.wav \ | |
--speaker_idx male' | |
if DEVICE == "cuda": | |
tts_command += " --use_cuda True" | |
print(f"Running IndicTTS on GPU") | |
else: | |
print(f"Running IndicTTS on CPU") | |
os.system(tts_command) | |
os.makedirs('/asr_models') | |
def download_ai4b_asr_model(lang: str): | |
available_langs = { | |
"odia": "or", | |
"hindi": "hi", | |
"tamil": "ta", | |
"telugu": "te", | |
"punjabi": "pa", | |
"kannada": "kn", | |
"bengali": "bn", | |
"marathi": "mr", | |
"gujarati": "gu", | |
"malayalam": "ml", | |
} | |
download_path = f"/asr_models/ai4b_indicConformer_{available_langs[lang]}.nemo" | |
print(f"Downloaded ASR model path: {download_path}") | |
if os.path.exists(download_path): | |
print(f"Model for {lang} already exists.") | |
elif lang not in available_langs: | |
raise ValueError(f"Invalid language code: {lang}") | |
return download_path | |
import librosa | |
def preprocess_audio(audio_path): | |
audio, sr = librosa.load(audio_path, sr=None, mono=True) | |
return audio, sr | |
def transcribe(audio: str, lang: str): | |
audio, sr = preprocess_audio(audio) | |
lang_map = { | |
"odia": "or", | |
"hindi": "hi", | |
"tamil": "ta", | |
"telugu": "te", | |
"punjabi": "pa", | |
"kannada": "kn", | |
"bengali": "bn", | |
"marathi": "mr", | |
"gujarati": "gu", | |
"malayalam": "ml", | |
} | |
download_path = download_ai4b_asr_model(lang=lang) | |
asr_model = nemo_asr.models.ASRModel.restore_from( | |
download_path, map_location=DEVICE | |
) | |
transcription = asr_model.transcribe(audio, batch_size=1, language_id=lang_map[lang])[0][0] | |
print(f"Transcription: {transcription}") | |
return transcription | |
def query_vector_db(query): | |
# Combine the top-3 similar documents from the vectorDB | |
result = " ".join([result.page_content for result in faiss.similarity_search(query, k=3)]) | |
return result | |
from langchain_core.prompts import PromptTemplate | |
def process_user_query(user_query, retrieved_doc): | |
prompt_template = PromptTemplate.from_template( | |
"You are a chatbot , which provides information to user based on their queries, \ | |
the user asks: {user_query}, The information from the related query is: {retrieved_doc}. \ | |
Now give the output based on the query and relevant information that i provided, written in a structured, well-formatted and concise way. \ | |
The length of the output should be no more than 70 words, must be in 5 lines." | |
) | |
prompt = prompt_template.format(user_query=user_query, retrieved_doc=retrieved_doc) | |
processed_doc = get_gemini_output(prompt) | |
print(processed_doc) | |
return processed_doc | |
#Context awareness | |
from collections import deque | |
class ContextManger: | |
def __init__(self,max_history=7): | |
self.history = deque(maxlen=max_history) | |
def add_interaction(self,query,response): | |
self.history.append((query,response)) | |
def get_context(self): | |
return list(self.history) | |
context_manager = ContextManger() | |
# context = context_manager.get_context() | |
# contexulized_query = f"Previous context: {context} \n\nCurrent query: {indic_to_en}" | |
import traceback | |
def process_gradio_input(audio, user_lang): | |
try: | |
# Use IndicASR to transcribe the input audio | |
print(f"Transcribing...") | |
query_transcription = transcribe(audio, lang=user_lang) | |
# Convert the Indic text from transcription to English, so that GPT-3.5 can process it | |
print(f"Translating indic to en..") | |
indic_to_en = indic_translate(src_lang=user_lang, tgt_lang="english", sents_to_translate=[query_transcription])[0] | |
# context_manager = ContextManager() | |
context = context_manager.get_context() | |
contexulized_query = f"Previous context: {context} \n\nCurrent query: {indic_to_en}" | |
# Query the Vector DB to get the relevant document from the query | |
print(f"Querying vector db") | |
retrieved_doc = query_vector_db(contexulized_query) | |
# Extract relevant information from the retrieved document | |
print(f"Processing user query") | |
processed_doc = process_user_query(user_query=contexulized_query, retrieved_doc=retrieved_doc) | |
context_manager.add_interaction(indic_to_en, processed_doc) | |
# Break the document into chunks for faster batch processing | |
print(f"Breaking document into chunks..") | |
processed_doc_chunks = processed_doc.strip().split(". ") | |
processed_doc_chunks = [f"{chunk}." for chunk in processed_doc_chunks if chunk != ""] | |
# Translate the the extracted information back to Indic language | |
print(f"Translating en to indic..") | |
en_to_indic_chunks = indic_translate(src_lang="english", tgt_lang=user_lang, sents_to_translate=processed_doc_chunks) | |
en_to_indic_doc = " ".join(en_to_indic_chunks) | |
print(f"en_to_indic_doc: {en_to_indic_doc}") | |
# Run IndicTTS to generate audio | |
print(f"Running TTS to generate audio..") | |
run_tts(text=en_to_indic_doc, tts_lang=user_lang) | |
print("Finished running TTS") | |
audio_outfile_path = "/content/tts_output.wav" | |
return en_to_indic_doc, audio_outfile_path | |
except Exception as e: | |
error_message = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}" | |
print(error_message) | |
return error_message, None | |
def launch_gradio_app(show_log=False): | |
languages = ["hindi", "odia", "tamil", "telugu", "punjabi", "kannada", "bengali", "marathi", "gujarati", "malayalam"] | |
iface = gr.Interface( | |
fn=process_gradio_input, | |
inputs=[ | |
gr.Audio(sources=['upload', 'microphone'], type="filepath", show_download_button=True), # Input audio | |
gr.Dropdown(languages, label="Language", value="hindi"), # Language selection | |
], | |
outputs=["text", "audio"], | |
allow_flagging="never", | |
title="Farmer's Voice Assistant 🧑🌾 Powered by AI4Bharat Tech", | |
description="Know about latest farming schemes, this system is powered by tools from AI4Bharat, like IndicASR, IndicTTS and IndicTrans", | |
) | |
iface.launch(debug=show_log) | |
launch_gradio_app(show_log=True) |