KrirshiChat / app.py
Shrirang20's picture
Update app.py
dc51565 verified
raw
history blame
15.5 kB
# Commented out IPython magic to ensure Python compatibility.
# %%shell
# pip install -q langchain_community langchain_huggingface faiss-cpu gradio openai google-generativeai langchain-google-genai torch torchvision torchaudio youtokentome pypdf accelerate
# Commented out IPython magic to ensure Python compatibility.
# %%capture
# %%shell
#
# # Install the custom version of NeMo by AI4Bharat
# wget https://indic-asr-public.objectstore.e2enetworks.net/ai4b_nemo.zip
#
# unzip -q /content/ai4b_nemo.zip && cd NeMo
# bash reinstall.sh
#
# cd ..
#
import os
import subprocess
import sys
def install_with_subprocess(args):
subprocess.run(args, check=True)
def remove_tensorflow():
subprocess.run([sys.executable, '-m', 'pip', 'uninstall', '-y', 'tensorflow'], check=True)
print("CURRENT WORKING DIRECTORY:",os.getcwd())
print("CURRENT WORKING DIRECTORY LIST:",os.listdir(os.getcwd()))
setup_flag = 'setup_complete.flag'
if not os.path.exists(setup_flag):
remove_tensorflow()
os.system('wget https://indic-asr-public.objectstore.e2enetworks.net/ai4b_nemo.zip')
os.system('unzip -q ai4b_nemo.zip')
os.chdir('NeMo')
install_with_subprocess([sys.executable, '-m', 'pip', 'install', '-e', '.'])
os.system('bash reinstall.sh')
os.chdir('..')
os.system('git clone -q https://github.com/VarunGumma/IndicTransTokenizer')
os.chdir('IndicTransTokenizer')
install_with_subprocess([sys.executable,'-m','pip','install','-q','--editable','./'])
os.chdir('..')
subprocess.run(['apt-get', 'update'], check=True)
subprocess.run(['apt-get', 'install', '-y', 'libsndfile1-dev', 'ffmpeg'], check=True)
os.system('git clone https://github.com/gokulkarthik/TTS')
os.chdir('TTS')
install_with_subprocess(['pip3', 'install', '-e', '.[all]'])
install_with_subprocess(['pip3', 'install', '-r', 'requirements.txt'])
os.chdir('..')
with open(setup_flag, 'w') as f:
f.write('Setup complete')
os.execv(sys.executable, ['python'] + sys.argv)
# Commented out IPython magic to ensure Python compatibility.
# %%capture
# %%shell
#
# git clone -q https://github.com/VarunGumma/IndicTransTokenizer
# cd IndicTransTokenizer
# pip install -q --editable ./
# cd ..
#
# Commented out IPython magic to ensure Python compatibility.
# %%capture
# %%shell
#
# apt-get install libsndfile1-dev ffmpeg
# git clone https://github.com/gokulkarthik/TTS
# cd TTS
# pip3 install -e .[all]
# pip3 install -r requirements.txt
# cd ..
#
"""## **Restart session**
"""
# Commented out IPython magic to ensure Python compatibility.
# %%capture
# !pip install gradio
# Commented out IPython magic to ensure Python compatibility.
# %%capture
#
# # INFO: If you're unable to import these libraries, just rerun this cell again.
#
import gradio as gr
from torch import cuda, inference_mode
import nemo.collections.asr as nemo_asr
from IndicTransTokenizer import IndicProcessor
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
DEVICE = "cuda" if cuda.is_available() else "cpu"
print(f"Using device: {DEVICE}")
import os
from langchain_community.vectorstores import FAISS
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.document_loaders import PyPDFLoader
"""### Load and convert PDF data into vectorDB"""
pm_kisan_doc = "PM-KISANOperationalGuidelines(English).pdf"
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=600,
chunk_overlap=100
)
loader = PyPDFLoader(pm_kisan_doc)
pages = loader.load_and_split(text_splitter=text_splitter)
pages_chunks = [page.page_content for page in pages]
print(f"Generated {len(pages_chunks)} chunks of {pm_kisan_doc}")
pages_chunks[8]
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
faiss = FAISS.from_texts(pages_chunks, embeddings)
"""### Querying the vectorDB"""
# Test query
result = faiss.similarity_search("what are the benefits of PM kisan yojna", k=3)
# This returns the most relevant doc similar to the query
print(result[0].page_content)
Result_with_score = faiss.similarity_search_with_score("what are the benefits of PM kisan yojna", k=3)
Result_with_score[0]
gemini_api_key = os.getenv('GEMINI_API_KEY')
import google.generativeai as genai
def get_gemini_output(prompt, temperature=0.6):
genai.configure(api_key= gemini_api_key)
model = genai.GenerativeModel(model_name='gemini-pro')
answer = model.generate_content(prompt,
generation_config=genai.types.GenerationConfig(
temperature=0.6))
return answer.text
"""## Build an end-to-end RAG powered Voice Assistant
"""
ip = IndicProcessor(inference=True)
# Commented out IPython magic to ensure Python compatibility.
# # %%capture
en2indic_tokenizer = AutoTokenizer.from_pretrained("ai4bharat/indictrans2-en-indic-dist-200M", trust_remote_code=True)
en2indic_model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/indictrans2-en-indic-dist-200M", trust_remote_code=True)
# Commented out IPython magic to ensure Python compatibility.
# # %%capture
indic2en_tokenizer = AutoTokenizer.from_pretrained("ai4bharat/indictrans2-indic-en-dist-200M", trust_remote_code=True)
indic2en_model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/indictrans2-indic-en-dist-200M", trust_remote_code=True)
model_tokenizer_config = {
"en2indic": {
"tokenizer": en2indic_tokenizer,
"model": en2indic_model,
},
"indic2en": {
"tokenizer": indic2en_tokenizer,
"model": indic2en_model,
}
}
def indic_translate(src_lang: str, tgt_lang: str, sents_to_translate: list):
lang_map = {
"punjabi": "pan_Guru",
"bengali": "ben_Beng",
"malayalam": "mal_Mlym",
"marathi": "mar_Deva",
"tamil": "tam_Taml",
"gujarati": "guj_Gujr",
"telugu": "tel_Telu",
"hindi": "hin_Deva",
"kannada": "kan_Knda",
"odia": "ory_Orya",
"english": "eng_Latn"
}
src_lang = lang_map[src_lang]
tgt_lang = lang_map[tgt_lang]
if src_lang == "eng_Latn":
tokenizer = model_tokenizer_config["en2indic"]["tokenizer"]
model = model_tokenizer_config["en2indic"]["model"]
print(f"Using en2indic, src_lang: {src_lang}, tgt_lang: {tgt_lang}")
else:
tokenizer = model_tokenizer_config["indic2en"]["tokenizer"]
model = model_tokenizer_config["indic2en"]["model"]
print(f"Using indic2en, src_lang: {src_lang}, tgt_lang: {tgt_lang}")
batch = ip.preprocess_batch(sents_to_translate, src_lang=src_lang, tgt_lang=tgt_lang, show_progress_bar=False)
batch = tokenizer(batch, padding="longest", truncation=True, max_length=256, return_tensors="pt")
with inference_mode():
print("Generating...")
outputs = model.generate(**batch, num_beams=5, num_return_sequences=1, max_length=256)
with tokenizer.as_target_tokenizer():
outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True, clean_up_tokenization_spaces=True)
if tgt_lang != "en_Latn":
print(f"Postprocessing for {tgt_lang}")
outputs = ip.postprocess_batch(outputs, lang=tgt_lang)
return outputs
def download_ai4b_tts_model(lang: str):
lang_map = {
"odia": "or",
"hindi": "hi",
"tamil": "ta",
"telugu": "te",
"punjabi": "pa",
"kannada": "kn",
"bengali": "bn",
"marathi": "mr",
"gujarati": "gu",
"malayalam": "ml",
}
selected_lang = lang_map[lang]
download_path = f"/{selected_lang}.zip"
if os.path.exists(download_path):
print(f"IndicTTS Model for {lang} already exists.")
def run_tts(text, tts_lang):
lang_map = {
"odia": "or",
"hindi": "hi",
"tamil": "ta",
"telugu": "te",
"punjabi": "pa",
"kannada": "kn",
"bengali": "bn",
"marathi": "mr",
"gujarati": "gu",
"malayalam": "ml",
}
download_ai4b_tts_model(lang=tts_lang)
tts_lang = lang_map[tts_lang]
print(f"Lang code: {tts_lang}")
tts_command = f'python3 -m TTS.bin.synthesize --text "{text}" \
--model_path /models/v1/{tts_lang}/fastpitch/best_model.pth \
--config_path /models/v1/{tts_lang}/fastpitch/config.json \
--vocoder_path /models/v1/{tts_lang}/hifigan/best_model.pth \
--vocoder_config_path /models/v1/{tts_lang}/hifigan/config.json \
--speakers_file_path /models/v1/{tts_lang}/fastpitch/speakers.pth \
--out_path /tts_output.wav \
--speaker_idx male'
if DEVICE == "cuda":
tts_command += " --use_cuda True"
print(f"Running IndicTTS on GPU")
else:
print(f"Running IndicTTS on CPU")
os.system(tts_command)
def download_ai4b_asr_model(lang: str):
available_langs = {
"odia": "or",
"hindi": "hi",
"tamil": "ta",
"telugu": "te",
"punjabi": "pa",
"kannada": "kn",
"bengali": "bn",
"marathi": "mr",
"gujarati": "gu",
"malayalam": "ml",
}
os.makedirs('asr_models', exist_ok=True)
# download_path = f"/asr_models/ai4b_indicConformer_{available_langs[lang]}.nemo"
download_dir = "asr_models"
download_path = os.path.join(download_dir,f"ai4b_indicConformer_{available_langs[lang]}.nemo")
print(f"Downloaded ASR model path: {download_path}")
if os.path.exists(download_path):
print(f"Model for {lang} already exists.")
elif lang not in available_langs:
raise ValueError(f"Invalid language code: {lang}")
else:
url = f"https://objectstore.e2enetworks.net/indic-asr-public/indicConformer/ai4b_indicConformer_{available_langs[lang]}.nemo"
try:
result= subprocess.run(['wget', url, '-O', download_path], check=True, capture_output=True, text=True)
print(result.stdout)
except subprocess.CallProcessError as e:
print(f"Error occured: {e.stderr}")
raise
return download_path
os.makedirs('asr_models', exist_ok=True)
def ensure_numpy_version():
try:
import numpy as np
required_version = '1.23'
if np.__version__ != required_version:
subprocess.run(['pip', 'install', f'numpy=={required_version}'], check=True)
except ImportError:
subprocess.run(['pip', 'install', 'numpy==1.23.0'], check=True)
ensure_numpy_version()
subprocess.run(['pip', 'install', 'numba==0.60.0'], check=True)
import librosa
def preprocess_audio(audio_path):
audio, sr = librosa.load(audio_path, sr=None, mono=True)
return audio, sr
def transcribe(audio: str, lang: str):
audio, sr = preprocess_audio(audio)
lang_map = {
"odia": "or",
"hindi": "hi",
"tamil": "ta",
"telugu": "te",
"punjabi": "pa",
"kannada": "kn",
"bengali": "bn",
"marathi": "mr",
"gujarati": "gu",
"malayalam": "ml",
}
download_path = download_ai4b_asr_model(lang=lang)
asr_model = nemo_asr.models.ASRModel.restore_from(
download_path, map_location=DEVICE
)
transcription = asr_model.transcribe(audio, batch_size=1, language_id=lang_map[lang])[0][0]
print(f"Transcription: {transcription}")
return transcription
def query_vector_db(query):
# Combine the top-3 similar documents from the vectorDB
result = " ".join([result.page_content for result in faiss.similarity_search(query, k=3)])
return result
from langchain_core.prompts import PromptTemplate
def process_user_query(user_query, retrieved_doc):
prompt_template = PromptTemplate.from_template(
"You are a chatbot , which provides information to user based on their queries, \
the user asks: {user_query}, The information from the related query is: {retrieved_doc}. \
Now give the output based on the query and relevant information that i provided, written in a structured, well-formatted and concise way. \
The length of the output should be no more than 70 words, must be in 5 lines."
)
prompt = prompt_template.format(user_query=user_query, retrieved_doc=retrieved_doc)
processed_doc = get_gemini_output(prompt)
print(processed_doc)
return processed_doc
#Context awareness
from collections import deque
class ContextManger:
def __init__(self,max_history=7):
self.history = deque(maxlen=max_history)
def add_interaction(self,query,response):
self.history.append((query,response))
def get_context(self):
return list(self.history)
context_manager = ContextManger()
# context = context_manager.get_context()
# contexulized_query = f"Previous context: {context} \n\nCurrent query: {indic_to_en}"
import traceback
def process_gradio_input(audio, user_lang):
try:
# Use IndicASR to transcribe the input audio
print(f"Transcribing...")
query_transcription = transcribe(audio, lang=user_lang)
# Convert the Indic text from transcription to English, so that GPT-3.5 can process it
print(f"Translating indic to en..")
indic_to_en = indic_translate(src_lang=user_lang, tgt_lang="english", sents_to_translate=[query_transcription])[0]
# context_manager = ContextManager()
context = context_manager.get_context()
contexulized_query = f"Previous context: {context} \n\nCurrent query: {indic_to_en}"
# Query the Vector DB to get the relevant document from the query
print(f"Querying vector db")
retrieved_doc = query_vector_db(contexulized_query)
# Extract relevant information from the retrieved document
print(f"Processing user query")
processed_doc = process_user_query(user_query=contexulized_query, retrieved_doc=retrieved_doc)
context_manager.add_interaction(indic_to_en, processed_doc)
# Break the document into chunks for faster batch processing
print(f"Breaking document into chunks..")
processed_doc_chunks = processed_doc.strip().split(". ")
processed_doc_chunks = [f"{chunk}." for chunk in processed_doc_chunks if chunk != ""]
# Translate the the extracted information back to Indic language
print(f"Translating en to indic..")
en_to_indic_chunks = indic_translate(src_lang="english", tgt_lang=user_lang, sents_to_translate=processed_doc_chunks)
en_to_indic_doc = " ".join(en_to_indic_chunks)
print(f"en_to_indic_doc: {en_to_indic_doc}")
# Run IndicTTS to generate audio
print(f"Running TTS to generate audio..")
run_tts(text=en_to_indic_doc, tts_lang=user_lang)
print("Finished running TTS")
audio_outfile_path = "tts_output.wav"
return en_to_indic_doc, audio_outfile_path
except Exception as e:
error_message = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
print(error_message)
return error_message, None
def launch_gradio_app(show_log=False):
languages = ["hindi", "odia", "tamil", "telugu", "punjabi", "kannada", "bengali", "marathi", "gujarati", "malayalam"]
iface = gr.Interface(
fn=process_gradio_input,
inputs=[
gr.Audio(sources=['upload', 'microphone'], type="filepath", show_download_button=True), # Input audio
gr.Dropdown(languages, label="Language", value="hindi"), # Language selection
],
outputs=["text", "audio"],
allow_flagging="never",
title="Farmer's Voice Assistant 🧑‍🌾 Powered by AI4Bharat Tech",
description="Know about latest farming schemes, this system is powered by tools from AI4Bharat, like IndicASR, IndicTTS and IndicTrans",
)
iface.launch(debug=show_log)
launch_gradio_app(show_log=True)