Spaces:
Runtime error
Runtime error
Shrirang20
commited on
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,442 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
# Commented out IPython magic to ensure Python compatibility.
|
4 |
+
# %%shell
|
5 |
+
#
|
6 |
+
# pip install -q langchain_community langchain_huggingface faiss-cpu gradio openai google-generativeai langchain-google-genai torch torchvision torchaudio youtokentome pypdf accelerate
|
7 |
+
#
|
8 |
+
|
9 |
+
|
10 |
+
# Commented out IPython magic to ensure Python compatibility.
|
11 |
+
# %%capture
|
12 |
+
# %%shell
|
13 |
+
#
|
14 |
+
# # Install the custom version of NeMo by AI4Bharat
|
15 |
+
# wget https://indic-asr-public.objectstore.e2enetworks.net/ai4b_nemo.zip
|
16 |
+
#
|
17 |
+
# unzip -q /content/ai4b_nemo.zip && cd NeMo
|
18 |
+
# bash reinstall.sh
|
19 |
+
#
|
20 |
+
# cd ..
|
21 |
+
#
|
22 |
+
|
23 |
+
# Commented out IPython magic to ensure Python compatibility.
|
24 |
+
# %%capture
|
25 |
+
# %%shell
|
26 |
+
#
|
27 |
+
# git clone -q https://github.com/VarunGumma/IndicTransTokenizer
|
28 |
+
# cd IndicTransTokenizer
|
29 |
+
# pip install -q --editable ./
|
30 |
+
# cd ..
|
31 |
+
#
|
32 |
+
|
33 |
+
|
34 |
+
# Commented out IPython magic to ensure Python compatibility.
|
35 |
+
# %%capture
|
36 |
+
# %%shell
|
37 |
+
#
|
38 |
+
# apt-get install libsndfile1-dev ffmpeg
|
39 |
+
#
|
40 |
+
# git clone https://github.com/gokulkarthik/TTS
|
41 |
+
# cd TTS
|
42 |
+
#
|
43 |
+
# pip3 install -e .[all]
|
44 |
+
# pip3 install -r requirements.txt
|
45 |
+
#
|
46 |
+
# cd ..
|
47 |
+
#
|
48 |
+
|
49 |
+
"""## **Restart session**
|
50 |
+
"""
|
51 |
+
|
52 |
+
# Commented out IPython magic to ensure Python compatibility.
|
53 |
+
# %%capture
|
54 |
+
# !pip install gradio
|
55 |
+
|
56 |
+
# Commented out IPython magic to ensure Python compatibility.
|
57 |
+
# %%capture
|
58 |
+
#
|
59 |
+
# # INFO: If you're unable to import these libraries, just rerun this cell again.
|
60 |
+
#
|
61 |
+
import gradio as gr
|
62 |
+
from torch import cuda, inference_mode
|
63 |
+
import nemo.collections.asr as nemo_asr
|
64 |
+
from IndicTransTokenizer import IndicProcessor
|
65 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
66 |
+
|
67 |
+
|
68 |
+
DEVICE = "cuda" if cuda.is_available() else "cpu"
|
69 |
+
|
70 |
+
print(f"Using device: {DEVICE}")
|
71 |
+
|
72 |
+
|
73 |
+
import os
|
74 |
+
from langchain_community.vectorstores import FAISS
|
75 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
76 |
+
from langchain_community.document_loaders import PyPDFLoader
|
77 |
+
|
78 |
+
"""### Load and convert PDF data into vectorDB"""
|
79 |
+
|
80 |
+
pm_kisan_doc = "/content/PM-KISANOperationalGuidelines(English).pdf"
|
81 |
+
|
82 |
+
from langchain_community.document_loaders import PyPDFLoader
|
83 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
84 |
+
|
85 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
86 |
+
chunk_size=600,
|
87 |
+
chunk_overlap=100
|
88 |
+
)
|
89 |
+
|
90 |
+
loader = PyPDFLoader(pm_kisan_doc)
|
91 |
+
pages = loader.load_and_split(text_splitter=text_splitter)
|
92 |
+
|
93 |
+
pages_chunks = [page.page_content for page in pages]
|
94 |
+
print(f"Generated {len(pages_chunks)} chunks of {pm_kisan_doc}")
|
95 |
+
|
96 |
+
pages_chunks[8]
|
97 |
+
|
98 |
+
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
99 |
+
|
100 |
+
faiss = FAISS.from_texts(pages_chunks, embeddings)
|
101 |
+
|
102 |
+
"""### Querying the vectorDB"""
|
103 |
+
|
104 |
+
# Test query
|
105 |
+
result = faiss.similarity_search("what are the benefits of PM kisan yojna", k=3)
|
106 |
+
|
107 |
+
# This returns the most relevant doc similar to the query
|
108 |
+
|
109 |
+
print(result[0].page_content)
|
110 |
+
|
111 |
+
Result_with_score = faiss.similarity_search_with_score("what are the benefits of PM kisan yojna", k=3)
|
112 |
+
Result_with_score[0]
|
113 |
+
|
114 |
+
os.environ['GEMINI_API_KEY'] = userdata.get('GEMINI_API_KEY')
|
115 |
+
|
116 |
+
import google.generativeai as genai
|
117 |
+
|
118 |
+
def get_gemini_output(prompt, temperature=0.6):
|
119 |
+
|
120 |
+
genai.configure(api_key= os.environ['GEMINI_API_KEY'])
|
121 |
+
model = genai.GenerativeModel(model_name='gemini-pro')
|
122 |
+
answer = model.generate_content(prompt,
|
123 |
+
generation_config=genai.types.GenerationConfig(
|
124 |
+
temperature=0.6))
|
125 |
+
|
126 |
+
return answer.text
|
127 |
+
|
128 |
+
"""## Build an end-to-end RAG powered Voice Assistant
|
129 |
+
"""
|
130 |
+
|
131 |
+
ip = IndicProcessor(inference=True)
|
132 |
+
|
133 |
+
# Commented out IPython magic to ensure Python compatibility.
|
134 |
+
# # %%capture
|
135 |
+
|
136 |
+
en2indic_tokenizer = AutoTokenizer.from_pretrained("ai4bharat/indictrans2-en-indic-dist-200M", trust_remote_code=True)
|
137 |
+
en2indic_model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/indictrans2-en-indic-dist-200M", trust_remote_code=True)
|
138 |
+
|
139 |
+
|
140 |
+
# Commented out IPython magic to ensure Python compatibility.
|
141 |
+
# # %%capture
|
142 |
+
|
143 |
+
indic2en_tokenizer = AutoTokenizer.from_pretrained("ai4bharat/indictrans2-indic-en-dist-200M", trust_remote_code=True)
|
144 |
+
indic2en_model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/indictrans2-indic-en-dist-200M", trust_remote_code=True)
|
145 |
+
|
146 |
+
|
147 |
+
model_tokenizer_config = {
|
148 |
+
"en2indic": {
|
149 |
+
"tokenizer": en2indic_tokenizer,
|
150 |
+
"model": en2indic_model,
|
151 |
+
},
|
152 |
+
"indic2en": {
|
153 |
+
"tokenizer": indic2en_tokenizer,
|
154 |
+
"model": indic2en_model,
|
155 |
+
}
|
156 |
+
}
|
157 |
+
|
158 |
+
def indic_translate(src_lang: str, tgt_lang: str, sents_to_translate: list):
|
159 |
+
|
160 |
+
lang_map = {
|
161 |
+
"punjabi": "pan_Guru",
|
162 |
+
"bengali": "ben_Beng",
|
163 |
+
"malayalam": "mal_Mlym",
|
164 |
+
"marathi": "mar_Deva",
|
165 |
+
"tamil": "tam_Taml",
|
166 |
+
"gujarati": "guj_Gujr",
|
167 |
+
"telugu": "tel_Telu",
|
168 |
+
"hindi": "hin_Deva",
|
169 |
+
"kannada": "kan_Knda",
|
170 |
+
"odia": "ory_Orya",
|
171 |
+
"english": "eng_Latn"
|
172 |
+
}
|
173 |
+
|
174 |
+
src_lang = lang_map[src_lang]
|
175 |
+
tgt_lang = lang_map[tgt_lang]
|
176 |
+
|
177 |
+
if src_lang == "eng_Latn":
|
178 |
+
tokenizer = model_tokenizer_config["en2indic"]["tokenizer"]
|
179 |
+
model = model_tokenizer_config["en2indic"]["model"]
|
180 |
+
|
181 |
+
print(f"Using en2indic, src_lang: {src_lang}, tgt_lang: {tgt_lang}")
|
182 |
+
|
183 |
+
else:
|
184 |
+
tokenizer = model_tokenizer_config["indic2en"]["tokenizer"]
|
185 |
+
model = model_tokenizer_config["indic2en"]["model"]
|
186 |
+
|
187 |
+
print(f"Using indic2en, src_lang: {src_lang}, tgt_lang: {tgt_lang}")
|
188 |
+
|
189 |
+
|
190 |
+
batch = ip.preprocess_batch(sents_to_translate, src_lang=src_lang, tgt_lang=tgt_lang, show_progress_bar=False)
|
191 |
+
batch = tokenizer(batch, padding="longest", truncation=True, max_length=256, return_tensors="pt")
|
192 |
+
|
193 |
+
with inference_mode():
|
194 |
+
print("Generating...")
|
195 |
+
outputs = model.generate(**batch, num_beams=5, num_return_sequences=1, max_length=256)
|
196 |
+
|
197 |
+
with tokenizer.as_target_tokenizer():
|
198 |
+
outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
199 |
+
|
200 |
+
if tgt_lang != "en_Latn":
|
201 |
+
print(f"Postprocessing for {tgt_lang}")
|
202 |
+
outputs = ip.postprocess_batch(outputs, lang=tgt_lang)
|
203 |
+
|
204 |
+
|
205 |
+
return outputs
|
206 |
+
|
207 |
+
def download_ai4b_tts_model(lang: str):
|
208 |
+
|
209 |
+
lang_map = {
|
210 |
+
"odia": "or",
|
211 |
+
"hindi": "hi",
|
212 |
+
"tamil": "ta",
|
213 |
+
"telugu": "te",
|
214 |
+
"punjabi": "pa",
|
215 |
+
"kannada": "kn",
|
216 |
+
"bengali": "bn",
|
217 |
+
"marathi": "mr",
|
218 |
+
"gujarati": "gu",
|
219 |
+
"malayalam": "ml",
|
220 |
+
}
|
221 |
+
|
222 |
+
selected_lang = lang_map[lang]
|
223 |
+
|
224 |
+
download_path = f"/{selected_lang}.zip"
|
225 |
+
|
226 |
+
if os.path.exists(download_path):
|
227 |
+
print(f"IndicTTS Model for {lang} already exists.")
|
228 |
+
|
229 |
+
def run_tts(text, tts_lang):
|
230 |
+
|
231 |
+
lang_map = {
|
232 |
+
"odia": "or",
|
233 |
+
"hindi": "hi",
|
234 |
+
"tamil": "ta",
|
235 |
+
"telugu": "te",
|
236 |
+
"punjabi": "pa",
|
237 |
+
"kannada": "kn",
|
238 |
+
"bengali": "bn",
|
239 |
+
"marathi": "mr",
|
240 |
+
"gujarati": "gu",
|
241 |
+
"malayalam": "ml",
|
242 |
+
}
|
243 |
+
|
244 |
+
download_ai4b_tts_model(lang=tts_lang)
|
245 |
+
|
246 |
+
tts_lang = lang_map[tts_lang]
|
247 |
+
print(f"Lang code: {tts_lang}")
|
248 |
+
|
249 |
+
|
250 |
+
tts_command = f'python3 -m TTS.bin.synthesize --text "{text}" \
|
251 |
+
--model_path /models/v1/{tts_lang}/fastpitch/best_model.pth \
|
252 |
+
--config_path /models/v1/{tts_lang}/fastpitch/config.json \
|
253 |
+
--vocoder_path /models/v1/{tts_lang}/hifigan/best_model.pth \
|
254 |
+
--vocoder_config_path /models/v1/{tts_lang}/hifigan/config.json \
|
255 |
+
--speakers_file_path /models/v1/{tts_lang}/fastpitch/speakers.pth \
|
256 |
+
--out_path /tts_output.wav \
|
257 |
+
--speaker_idx male'
|
258 |
+
|
259 |
+
if DEVICE == "cuda":
|
260 |
+
tts_command += " --use_cuda True"
|
261 |
+
print(f"Running IndicTTS on GPU")
|
262 |
+
|
263 |
+
else:
|
264 |
+
print(f"Running IndicTTS on CPU")
|
265 |
+
|
266 |
+
os.system(tts_command)
|
267 |
+
|
268 |
+
os.makedirs('/asr_models')
|
269 |
+
|
270 |
+
def download_ai4b_asr_model(lang: str):
|
271 |
+
|
272 |
+
available_langs = {
|
273 |
+
"odia": "or",
|
274 |
+
"hindi": "hi",
|
275 |
+
"tamil": "ta",
|
276 |
+
"telugu": "te",
|
277 |
+
"punjabi": "pa",
|
278 |
+
"kannada": "kn",
|
279 |
+
"bengali": "bn",
|
280 |
+
"marathi": "mr",
|
281 |
+
"gujarati": "gu",
|
282 |
+
"malayalam": "ml",
|
283 |
+
}
|
284 |
+
|
285 |
+
download_path = f"/asr_models/ai4b_indicConformer_{available_langs[lang]}.nemo"
|
286 |
+
print(f"Downloaded ASR model path: {download_path}")
|
287 |
+
|
288 |
+
if os.path.exists(download_path):
|
289 |
+
print(f"Model for {lang} already exists.")
|
290 |
+
|
291 |
+
elif lang not in available_langs:
|
292 |
+
raise ValueError(f"Invalid language code: {lang}")
|
293 |
+
|
294 |
+
return download_path
|
295 |
+
|
296 |
+
import librosa
|
297 |
+
|
298 |
+
def preprocess_audio(audio_path):
|
299 |
+
audio, sr = librosa.load(audio_path, sr=None, mono=True)
|
300 |
+
return audio, sr
|
301 |
+
|
302 |
+
def transcribe(audio: str, lang: str):
|
303 |
+
audio, sr = preprocess_audio(audio)
|
304 |
+
|
305 |
+
lang_map = {
|
306 |
+
"odia": "or",
|
307 |
+
"hindi": "hi",
|
308 |
+
"tamil": "ta",
|
309 |
+
"telugu": "te",
|
310 |
+
"punjabi": "pa",
|
311 |
+
"kannada": "kn",
|
312 |
+
"bengali": "bn",
|
313 |
+
"marathi": "mr",
|
314 |
+
"gujarati": "gu",
|
315 |
+
"malayalam": "ml",
|
316 |
+
}
|
317 |
+
|
318 |
+
download_path = download_ai4b_asr_model(lang=lang)
|
319 |
+
|
320 |
+
asr_model = nemo_asr.models.ASRModel.restore_from(
|
321 |
+
download_path, map_location=DEVICE
|
322 |
+
)
|
323 |
+
|
324 |
+
transcription = asr_model.transcribe(audio, batch_size=1, language_id=lang_map[lang])[0][0]
|
325 |
+
print(f"Transcription: {transcription}")
|
326 |
+
|
327 |
+
return transcription
|
328 |
+
|
329 |
+
def query_vector_db(query):
|
330 |
+
# Combine the top-3 similar documents from the vectorDB
|
331 |
+
result = " ".join([result.page_content for result in faiss.similarity_search(query, k=3)])
|
332 |
+
|
333 |
+
return result
|
334 |
+
|
335 |
+
from langchain_core.prompts import PromptTemplate
|
336 |
+
|
337 |
+
def process_user_query(user_query, retrieved_doc):
|
338 |
+
|
339 |
+
prompt_template = PromptTemplate.from_template(
|
340 |
+
"You are a chatbot , which provides information to user based on their queries, \
|
341 |
+
the user asks: {user_query}, The information from the related query is: {retrieved_doc}. \
|
342 |
+
Now give the output based on the query and relevant information that i provided, written in a structured, well-formatted and concise way. \
|
343 |
+
The length of the output should be no more than 70 words, must be in 5 lines."
|
344 |
+
)
|
345 |
+
|
346 |
+
prompt = prompt_template.format(user_query=user_query, retrieved_doc=retrieved_doc)
|
347 |
+
|
348 |
+
processed_doc = get_gemini_output(prompt)
|
349 |
+
print(processed_doc)
|
350 |
+
|
351 |
+
return processed_doc
|
352 |
+
|
353 |
+
#Context awareness
|
354 |
+
from collections import deque
|
355 |
+
|
356 |
+
class ContextManger:
|
357 |
+
def __init__(self,max_history=7):
|
358 |
+
self.history = deque(maxlen=max_history)
|
359 |
+
|
360 |
+
def add_interaction(self,query,response):
|
361 |
+
self.history.append((query,response))
|
362 |
+
|
363 |
+
def get_context(self):
|
364 |
+
return list(self.history)
|
365 |
+
|
366 |
+
context_manager = ContextManger()
|
367 |
+
|
368 |
+
# context = context_manager.get_context()
|
369 |
+
# contexulized_query = f"Previous context: {context} \n\nCurrent query: {indic_to_en}"
|
370 |
+
|
371 |
+
import traceback
|
372 |
+
|
373 |
+
def process_gradio_input(audio, user_lang):
|
374 |
+
try:
|
375 |
+
# Use IndicASR to transcribe the input audio
|
376 |
+
print(f"Transcribing...")
|
377 |
+
query_transcription = transcribe(audio, lang=user_lang)
|
378 |
+
|
379 |
+
# Convert the Indic text from transcription to English, so that GPT-3.5 can process it
|
380 |
+
print(f"Translating indic to en..")
|
381 |
+
indic_to_en = indic_translate(src_lang=user_lang, tgt_lang="english", sents_to_translate=[query_transcription])[0]
|
382 |
+
|
383 |
+
# context_manager = ContextManager()
|
384 |
+
|
385 |
+
context = context_manager.get_context()
|
386 |
+
contexulized_query = f"Previous context: {context} \n\nCurrent query: {indic_to_en}"
|
387 |
+
|
388 |
+
# Query the Vector DB to get the relevant document from the query
|
389 |
+
print(f"Querying vector db")
|
390 |
+
retrieved_doc = query_vector_db(contexulized_query)
|
391 |
+
|
392 |
+
# Extract relevant information from the retrieved document
|
393 |
+
print(f"Processing user query")
|
394 |
+
processed_doc = process_user_query(user_query=contexulized_query, retrieved_doc=retrieved_doc)
|
395 |
+
|
396 |
+
context_manager.add_interaction(indic_to_en, processed_doc)
|
397 |
+
|
398 |
+
# Break the document into chunks for faster batch processing
|
399 |
+
print(f"Breaking document into chunks..")
|
400 |
+
processed_doc_chunks = processed_doc.strip().split(". ")
|
401 |
+
processed_doc_chunks = [f"{chunk}." for chunk in processed_doc_chunks if chunk != ""]
|
402 |
+
|
403 |
+
# Translate the the extracted information back to Indic language
|
404 |
+
print(f"Translating en to indic..")
|
405 |
+
en_to_indic_chunks = indic_translate(src_lang="english", tgt_lang=user_lang, sents_to_translate=processed_doc_chunks)
|
406 |
+
en_to_indic_doc = " ".join(en_to_indic_chunks)
|
407 |
+
print(f"en_to_indic_doc: {en_to_indic_doc}")
|
408 |
+
|
409 |
+
# Run IndicTTS to generate audio
|
410 |
+
print(f"Running TTS to generate audio..")
|
411 |
+
run_tts(text=en_to_indic_doc, tts_lang=user_lang)
|
412 |
+
print("Finished running TTS")
|
413 |
+
|
414 |
+
audio_outfile_path = "/content/tts_output.wav"
|
415 |
+
|
416 |
+
|
417 |
+
return en_to_indic_doc, audio_outfile_path
|
418 |
+
|
419 |
+
except Exception as e:
|
420 |
+
error_message = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
|
421 |
+
print(error_message)
|
422 |
+
return error_message, None
|
423 |
+
|
424 |
+
def launch_gradio_app(show_log=False):
|
425 |
+
|
426 |
+
languages = ["hindi", "odia", "tamil", "telugu", "punjabi", "kannada", "bengali", "marathi", "gujarati", "malayalam"]
|
427 |
+
|
428 |
+
iface = gr.Interface(
|
429 |
+
fn=process_gradio_input,
|
430 |
+
inputs=[
|
431 |
+
gr.Audio(sources=['upload', 'microphone'], type="filepath", show_download_button=True), # Input audio
|
432 |
+
gr.Dropdown(languages, label="Language", value="hindi"), # Language selection
|
433 |
+
],
|
434 |
+
outputs=["text", "audio"],
|
435 |
+
allow_flagging="never",
|
436 |
+
title="Farmer's Voice Assistant 🧑🌾 Powered by AI4Bharat Tech",
|
437 |
+
description="Know about latest farming schemes, this system is powered by tools from AI4Bharat, like IndicASR, IndicTTS and IndicTrans",
|
438 |
+
)
|
439 |
+
|
440 |
+
iface.launch(debug=show_log)
|
441 |
+
|
442 |
+
launch_gradio_app(show_log=True)
|