yangapku commited on
Commit
33640e7
1 Parent(s): 83dac04

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -9
app.py CHANGED
@@ -12,34 +12,39 @@ pipes = {
12
  "ViT/H-14": pipeline("zero-shot-image-classification", model="OFA-Sys/chinese-clip-vit-huge-patch14"),
13
  }
14
  inputs = [
15
- gr.inputs.Image(type='pil'),
16
- "text",
 
 
17
  gr.inputs.Radio(choices=[
18
  "ViT/B-16",
19
  "ViT/L-14",
20
  "ViT/L-14@336px",
21
  "ViT/H-14",
22
- ], type="value", default="ViT/B-16", label="Model"),
 
 
 
23
  ]
24
  images="festival.jpg"
25
 
26
- def shot(image, labels_text, model_name):
27
  labels = [label.strip(" ") for label in labels_text.strip(" ").split(",")]
28
  res = pipes[model_name](images=image,
29
  candidate_labels=labels,
30
- hypothesis_template= "一张{}的图片。")
31
  return {dic["label"]: dic["score"] for dic in res}
32
 
33
  iface = gr.Interface(shot,
34
  inputs,
35
  "label",
36
- examples=[["festival.jpg", "灯笼, 鞭炮, 对联", "ViT/B-16"],
37
- ["cat-dog-music.png", "音乐表演, 体育运动", "ViT/B-16"],
38
- ["football-match.jpg", "梅西, C罗, 马奎尔", "ViT/B-16"]],
39
  description="""<p>Chinese CLIP is a contrastive-learning-based vision-language foundation model pretrained on large-scale Chinese data. For more information, please refer to the paper and official github. Also, Chinese CLIP has already been merged into Huggingface Transformers! <br><br>
40
  Paper: <a href='https://arxiv.org/abs/2211.01335'>https://arxiv.org/abs/2211.01335</a> <br>
41
  Github: <a href='https://github.com/OFA-Sys/Chinese-CLIP'>https://github.com/OFA-Sys/Chinese-CLIP</a> (Welcome to star! 🔥🔥) <br><br>
42
- To play with this demo, add a picture and a list of labels in Chinese separated by commas. 上传图片,并输入多个分类标签,用英文逗号分隔。<br>
43
  You can duplicate this space and run it privately: <a href='https://huggingface.co/spaces/OFA-Sys/chinese-clip-zero-shot-image-classification?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14' alt='Duplicate Space'></a></p>""",
44
  title="Zero-shot Image Classification (中文零样本图像分类)")
45
 
 
12
  "ViT/H-14": pipeline("zero-shot-image-classification", model="OFA-Sys/chinese-clip-vit-huge-patch14"),
13
  }
14
  inputs = [
15
+ gr.inputs.Image(type='pil',
16
+ label="Image 输入图片"),
17
+ gr.inputs.Textbox(lines=1,
18
+ label="Candidate Labels 候选分类标签"),
19
  gr.inputs.Radio(choices=[
20
  "ViT/B-16",
21
  "ViT/L-14",
22
  "ViT/L-14@336px",
23
  "ViT/H-14",
24
+ ], type="value", default="ViT/B-16", label="Model 模型规模"),
25
+ gr.inputs.Textbox(lines=1,
26
+ label="Prompt Template Prompt模板 ({}指代候选标签)",
27
+ default="一张{}的图片。"),
28
  ]
29
  images="festival.jpg"
30
 
31
+ def shot(image, labels_text, model_name, hypothesis_template):
32
  labels = [label.strip(" ") for label in labels_text.strip(" ").split(",")]
33
  res = pipes[model_name](images=image,
34
  candidate_labels=labels,
35
+ hypothesis_template=hypothesis_template)
36
  return {dic["label"]: dic["score"] for dic in res}
37
 
38
  iface = gr.Interface(shot,
39
  inputs,
40
  "label",
41
+ examples=[["festival.jpg", "灯笼, 鞭炮, 对联", "ViT/B-16", "一张{}的图片。"],
42
+ ["cat-dog-music.png", "音乐表演, 体育运动", "ViT/B-16", "一张{}的图片。"],
43
+ ["football-match.jpg", "梅西, C罗, 马奎尔", "ViT/B-16", "一张{}的图片。"]],
44
  description="""<p>Chinese CLIP is a contrastive-learning-based vision-language foundation model pretrained on large-scale Chinese data. For more information, please refer to the paper and official github. Also, Chinese CLIP has already been merged into Huggingface Transformers! <br><br>
45
  Paper: <a href='https://arxiv.org/abs/2211.01335'>https://arxiv.org/abs/2211.01335</a> <br>
46
  Github: <a href='https://github.com/OFA-Sys/Chinese-CLIP'>https://github.com/OFA-Sys/Chinese-CLIP</a> (Welcome to star! 🔥🔥) <br><br>
47
+ To play with this demo, add a picture and a list of labels in Chinese separated by commas. 上传图片,并输入多个分类标签,用英文逗号分隔。可点击页面最下方示例参考。<br>
48
  You can duplicate this space and run it privately: <a href='https://huggingface.co/spaces/OFA-Sys/chinese-clip-zero-shot-image-classification?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14' alt='Duplicate Space'></a></p>""",
49
  title="Zero-shot Image Classification (中文零样本图像分类)")
50