# -*- coding: utf-8 -*- """Copy of compose_glide.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/19xx6Nu4FeiGj-TzTUFxBf-15IkeuFx_F """ # from PIL import Image # from IPython.display import display import torch as th import numpy as np from glide_text2im.download import load_checkpoint from glide_text2im.model_creation import ( create_model_and_diffusion, model_and_diffusion_defaults, model_and_diffusion_defaults_upsampler ) from composable_diffusion.download import download_model from composable_diffusion.model_creation import create_model_and_diffusion as create_model_and_diffusion_for_clevr from composable_diffusion.model_creation import model_and_diffusion_defaults as model_and_diffusion_defaults_for_clevr from PIL import Image from torch import autocast from diffusers import StableDiffusionPipeline # This notebook supports both CPU and GPU. # On CPU, generating one sample may take on the order of 20 minutes. # On a GPU, it should be under a minute. has_cuda = th.cuda.is_available() device = th.device('cpu' if not has_cuda else 'cuda') print(device) # iniatilize stable diffusion model pipe = StableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", use_auth_token=True ).to(device) # Create base model. timestep_respacing = 100 # @param{type: 'number'} options = model_and_diffusion_defaults() options['use_fp16'] = has_cuda options['timestep_respacing'] = str(timestep_respacing) # use 100 diffusion steps for fast sampling model, diffusion = create_model_and_diffusion(**options) model.eval() if has_cuda: model.convert_to_fp16() model.to(device) model.load_state_dict(load_checkpoint('base', device)) print('total base parameters', sum(x.numel() for x in model.parameters())) # Create upsampler model. options_up = model_and_diffusion_defaults_upsampler() options_up['use_fp16'] = has_cuda options_up['timestep_respacing'] = 'fast27' # use 27 diffusion steps for very fast sampling model_up, diffusion_up = create_model_and_diffusion(**options_up) model_up.eval() if has_cuda: model_up.convert_to_fp16() model_up.to(device) model_up.load_state_dict(load_checkpoint('upsample', device)) print('total upsampler parameters', sum(x.numel() for x in model_up.parameters())) def show_images(batch: th.Tensor): """ Display a batch of images inline. """ scaled = ((batch + 1) * 127.5).round().clamp(0, 255).to(th.uint8).cpu() reshaped = scaled.permute(2, 0, 3, 1).reshape([batch.shape[2], -1, 3]) display(Image.fromarray(reshaped.numpy())) def compose_language_descriptions(prompt, guidance_scale): # @markdown `prompt`: when composing multiple sentences, using `|` as the delimiter. prompts = [x.strip() for x in prompt.split('|')] batch_size = 1 # Tune this parameter to control the sharpness of 256x256 images. # A value of 1.0 is sharper, but sometimes results in grainy artifacts. upsample_temp = 0.980 # @param{type: 'number'} masks = [True] * len(prompts) + [False] # coefficients = th.tensor([0.5, 0.5], device=device).reshape(-1, 1, 1, 1) masks = th.tensor(masks, dtype=th.bool, device=device) # sampling function def model_fn(x_t, ts, **kwargs): half = x_t[:1] combined = th.cat([half] * x_t.size(0), dim=0) model_out = model(combined, ts, **kwargs) eps, rest = model_out[:, :3], model_out[:, 3:] cond_eps = eps[masks].mean(dim=0, keepdim=True) # cond_eps = (coefficients * eps[masks]).sum(dim=0)[None] uncond_eps = eps[~masks].mean(dim=0, keepdim=True) half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps) eps = th.cat([half_eps] * x_t.size(0), dim=0) return th.cat([eps, rest], dim=1) ############################## # Sample from the base model # ############################## # Create the text tokens to feed to the model. def sample_64(prompts): tokens_list = [model.tokenizer.encode(prompt) for prompt in prompts] outputs = [model.tokenizer.padded_tokens_and_mask( tokens, options['text_ctx'] ) for tokens in tokens_list] cond_tokens, cond_masks = zip(*outputs) cond_tokens, cond_masks = list(cond_tokens), list(cond_masks) full_batch_size = batch_size * (len(prompts) + 1) uncond_tokens, uncond_mask = model.tokenizer.padded_tokens_and_mask( [], options['text_ctx'] ) # Pack the tokens together into model kwargs. model_kwargs = dict( tokens=th.tensor( cond_tokens + [uncond_tokens], device=device ), mask=th.tensor( cond_masks + [uncond_mask], dtype=th.bool, device=device, ), ) # Sample from the base model. model.del_cache() samples = diffusion.p_sample_loop( model_fn, (full_batch_size, 3, options["image_size"], options["image_size"]), device=device, clip_denoised=True, progress=True, model_kwargs=model_kwargs, cond_fn=None, )[:batch_size] model.del_cache() # Show the output return samples ############################## # Upsample the 64x64 samples # ############################## def upsampling_256(prompts, samples): tokens = model_up.tokenizer.encode("".join(prompts)) tokens, mask = model_up.tokenizer.padded_tokens_and_mask( tokens, options_up['text_ctx'] ) # Create the model conditioning dict. model_kwargs = dict( # Low-res image to upsample. low_res=((samples + 1) * 127.5).round() / 127.5 - 1, # Text tokens tokens=th.tensor( [tokens] * batch_size, device=device ), mask=th.tensor( [mask] * batch_size, dtype=th.bool, device=device, ), ) # Sample from the base model. model_up.del_cache() up_shape = (batch_size, 3, options_up["image_size"], options_up["image_size"]) up_samples = diffusion_up.ddim_sample_loop( model_up, up_shape, noise=th.randn(up_shape, device=device) * upsample_temp, device=device, clip_denoised=True, progress=True, model_kwargs=model_kwargs, cond_fn=None, )[:batch_size] model_up.del_cache() # Show the output return up_samples # sampling 64x64 images samples = sample_64(prompts) # show_images(samples) # upsample from 64x64 to 256x256 upsamples = upsampling_256(prompts, samples) # show_images(upsamples) out_img = upsamples[0].permute(1, 2, 0) out_img = (out_img + 1) / 2 out_img = (out_img.detach().cpu() * 255.).to(th.uint8) out_img = out_img.numpy() return out_img # create model for CLEVR Objects clevr_options = model_and_diffusion_defaults_for_clevr() flags = { "image_size": 128, "num_channels": 192, "num_res_blocks": 2, "learn_sigma": True, "use_scale_shift_norm": False, "raw_unet": True, "noise_schedule": "squaredcos_cap_v2", "rescale_learned_sigmas": False, "rescale_timesteps": False, "num_classes": '2', "dataset": "clevr_pos", "use_fp16": has_cuda, "timestep_respacing": '100' } for key, val in flags.items(): clevr_options[key] = val clevr_model, clevr_diffusion = create_model_and_diffusion_for_clevr(**clevr_options) clevr_model.eval() if has_cuda: clevr_model.convert_to_fp16() clevr_model.to(device) clevr_model.load_state_dict(th.load(download_model('clevr_pos'), device)) print('total clevr_pos parameters', sum(x.numel() for x in clevr_model.parameters())) def compose_clevr_objects(prompt, guidance_scale): coordinates = [[float(x.split(',')[0].strip()), float(x.split(',')[1].strip())] for x in prompt.split('|')] coordinates += [[-1, -1]] # add unconditional score label batch_size = 1 def model_fn(x_t, ts, **kwargs): half = x_t[:1] combined = th.cat([half] * kwargs['y'].size(0), dim=0) model_out = clevr_model(combined, ts, **kwargs) eps, rest = model_out[:, :3], model_out[:, 3:] masks = kwargs.get('masks') cond_eps = eps[masks].mean(dim=0, keepdim=True) uncond_eps = eps[~masks].mean(dim=0, keepdim=True) half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps) eps = th.cat([half_eps] * x_t.size(0), dim=0) return th.cat([eps, rest], dim=1) def sample(coordinates): masks = [True] * (len(coordinates) - 1) + [False] model_kwargs = dict( y=th.tensor(coordinates, dtype=th.float, device=device), masks=th.tensor(masks, dtype=th.bool, device=device) ) samples = clevr_diffusion.p_sample_loop( model_fn, (len(coordinates), 3, clevr_options["image_size"], clevr_options["image_size"]), device=device, clip_denoised=True, progress=True, model_kwargs=model_kwargs, cond_fn=None, )[:batch_size] return samples samples = sample(coordinates) out_img = samples[0].permute(1, 2, 0) out_img = (out_img + 1) / 2 out_img = (out_img.detach().cpu() * 255.).to(th.uint8) out_img = out_img.numpy() Image.fromarray(out_img).convert('RGB').save('test.png') return out_img def stable_diffusion_compose(prompt, scale): with autocast('cpu' if not has_cuda else 'cuda'): image = pipe(prompt, guidance_scale=scale)["sample"][0] return image def compose(prompt, version, guidance_scale): if version == 'GLIDE': return compose_language_descriptions(prompt, guidance_scale) elif version == 'Stable_Diffusion_1v_4': return stable_diffusion_compose(prompt, guidance_scale) else: return compose_clevr_objects(prompt, guidance_scale) examples_1 = 'a camel | a forest' examples_2 = 'A cloudy blue sky | A mountain in the horizon | Cherry Blossoms in front of the mountain' examples_3 = '0.1, 0.5 | 0.3, 0.5 | 0.5, 0.5 | 0.7, 0.5 | 0.9, 0.5' examples_4 = 'a river leading into a mountain | red trees on the side' examples = [[examples_1, 'GLIDE', 10], [examples_4, 'Stable_Diffusion_1v_4', 10], [examples_2, 'GLIDE', 10], [examples_3, 'CLEVR Objects', 10]] import gradio as gr title = 'Compositional Visual Generation with Composable Diffusion Models' description = '
Demo for Composable Diffusion
See more information from our Project Page.
When composing multiple sentences, use `|` as the delimiter, see given examples below.
' iface = gr.Interface(compose, inputs=["text", gr.Radio(['Stable_Diffusion_1v_4', 'GLIDE', 'CLEVR Objects'], type="value", label='version'), gr.Slider(2, 20)], outputs='image', title=title, description=description, examples=examples) iface.launch()