File size: 1,831 Bytes
ab8e13c
0131356
 
ab8e13c
0131356
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab8e13c
0131356
 
ab8e13c
 
0131356
 
ab8e13c
0131356
 
 
 
7e979af
ab8e13c
 
0131356
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import gradio as gr
from gradio_leaderboard import Leaderboard, SelectColumns, ColumnFilter
from pathlib import Path
import pandas as pd
import random
import requests
import json

data = requests.get("https://raw.githubusercontent.com/BerriAI/litellm/refs/heads/main/model_prices_and_context_window.json").json()
if 'sample_spec' in data:
    del data['sample_spec']
df = pd.DataFrame.from_dict(data, orient='index')
df = df.reset_index()
filters = []
df['deprecation_date'] = pd.to_datetime(df['deprecation_date'], errors='coerce')
df = df[df['deprecation_date'].isna() | (df['deprecation_date'] > pd.Timestamp.now())]
for col in df.columns:
    if 'supports_' in col:
        filters.append(ColumnFilter(col, type="boolean", default=False))
    if col=='metadata':
        try:
            df[col] = df[col].apply(lambda x: json.dumps(x))
        except:
            pass
    if 'cost_per_token' in col:
        df[col] = df[col] * 1000000
        df = df.rename(columns={col: col.replace('cost_per_token', 'cost_per_M_tokens')})
    
df = df.rename(columns={'index': 'model_name'})
# print(df.head())

with gr.Blocks() as demo:
    gr.Markdown("""
    # 🥇 LLM Comparison (LiteLLM)
    """)
    Leaderboard(
        value=df,
        select_columns=SelectColumns(
            default_selection=['model_name','max_input_tokens','max_output_tokens','input_cost_per_M_tokens','output_cost_per_M_tokens','tpm','rpm','rpd'],
            # cant_deselect=["model_name"],
            label="Select Columns to Display:",
        ),
        search_columns=["model_name"],
        # hide_columns=["model_name_for_query", "Model Size"],
        filter_columns=[
            "mode"
        ]+filters,
        # datatype=config.TYPES,
        # column_widths=["33%"],
        height=1920,
    )

if __name__ == "__main__":
    demo.launch()