import gradio as gr import soundfile import time import torch import scipy.io.wavfile from espnet2.utils.types import str_or_none from espnet2.bin.asr_inference import Speech2Text from subprocess import call import os from espnet_model_zoo.downloader import ModelDownloader # print(a1) # exit() # exit() # tagen = 'kan-bayashi/ljspeech_vits' # vocoder_tagen = "none" speech2text_slurp = Speech2Text.from_pretrained( asr_train_config="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/config.yaml", asr_model_file="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/valid.acc.ave_10best.pth", # Decoding parameters are not included in the model file lang_prompt_token="<|en|> <|ner|> <|SLURP|>", prompt_token_file="UniverSLU-17-Task-Specifier/add_tokens-Copy1.txt", nbest=1 ) speech2text_fsc = Speech2Text.from_pretrained( asr_train_config="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/config.yaml", asr_model_file="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/valid.acc.ave_10best.pth", # Decoding parameters are not included in the model file lang_prompt_token="<|en|> <|ic|> <|fsc|>", prompt_token_file="UniverSLU-17-Task-Specifier/add_tokens-Copy1.txt", nbest=1 ) speech2text_grabo = Speech2Text.from_pretrained( asr_train_config="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/config.yaml", asr_model_file="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/valid.acc.ave_10best.pth", # Decoding parameters are not included in the model file lang_prompt_token="<|nl|> <|scr|> <|grabo_scr|>", prompt_token_file="UniverSLU-17-Task-Specifier/add_tokens-Copy1.txt", nbest=1 ) def inference(wav,data): with torch.no_grad(): if data == "english_slurp": speech, rate = soundfile.read(wav.name) nbests = speech2text_slurp(speech) text, *_ = nbests[0] # intent=text.split(" ")[0] # scenario=intent.split("_")[0] # action=intent.split("_")[1] # text="{scenario: "+scenario+", action: "+action+"}" elif data == "english_fsc": print(wav.name) speech, rate = soundfile.read(wav.name) print(speech.shape) if len(speech.shape)==2: speech=speech[:,0] # soundfile.write("store_file.wav", speech, rate, subtype='FLOAT') print(speech.shape) nbests = speech2text_fsc(speech) text, *_ = nbests[0] # intent=text.split(" ")[0] # action=intent.split("_")[0] # objects=intent.split("_")[1] # location=intent.split("_")[2] # text="{action: "+action+", object: "+objects+", location: "+location+"}" # elif data == "english_snips": # print(wav.name) # speech, rate = soundfile.read(wav.name) # nbests = speech2text_snips(speech) # text, *_ = nbests[0] elif data == "dutch": print(wav.name) speech, rate = soundfile.read(wav.name) nbests = speech2text_grabo(speech) text, *_ = nbests[0] # intent=text.split(" ")[0] # action=intent.split("_")[0] # objects=intent.split("_")[1] # location=intent.split("_")[2] # text="{action: "+action+", object: "+objects+", location: "+location+"}" # if lang == "chinese": # wav = text2speechch(text)["wav"] # scipy.io.wavfile.write("out.wav",text2speechch.fs , wav.view(-1).cpu().numpy()) # if lang == "japanese": # wav = text2speechjp(text)["wav"] # scipy.io.wavfile.write("out.wav",text2speechjp.fs , wav.view(-1).cpu().numpy()) return text title = "UniverSLU" description = "Gradio demo for UniverSLU: Universal Spoken Language Understanding for Diverse Tasks with Natural Language Instructions. To use it, simply record your audio or click one of the examples to load them. Read more at the links below." article = "

Github Repo

" examples=[['audio_slurp.flac',"english_slurp"],['audio_fsc.wav',"english_fsc"],['audio_grabo.wav',"dutch"]] # gr.inputs.Textbox(label="input text",lines=10),gr.inputs.Radio(choices=["english"], type="value", default="english", label="language") gr.Interface( inference, [gr.inputs.Audio(label="input audio",source = "microphone", type="file"),gr.inputs.Radio(choices=["english_slurp","english_fsc","dutch_scd"], type="value", default="english_fsc", label="Task")], gr.outputs.Textbox(type="str", label="Output"), title=title, description=description, article=article, enable_queue=True, examples=examples ).launch(debug=True)