Spaces:
Sleeping
Sleeping
try: | |
import versa | |
except ImportError: | |
from subprocess import call | |
with open('versa.sh', 'rb') as file: | |
script = file.read() | |
rc = call(script, shell=True) | |
import os | |
import shutil | |
from espnet2.sds.asr.espnet_asr import ESPnetASRModel | |
from espnet2.sds.asr.owsm_asr import OWSMModel | |
from espnet2.sds.asr.owsm_ctc_asr import OWSMCTCModel | |
from espnet2.sds.asr.whisper_asr import WhisperASRModel | |
from espnet2.sds.tts.espnet_tts import ESPnetTTSModel | |
from espnet2.sds.tts.chat_tts import ChatTTSModel | |
from espnet2.sds.llm.hugging_face_llm import HuggingFaceLLM | |
from espnet2.sds.vad.webrtc_vad import WebrtcVADModel | |
from espnet2.sds.eval.TTS_intelligibility import handle_espnet_TTS_intelligibility | |
from espnet2.sds.eval.ASR_WER import handle_espnet_ASR_WER | |
from espnet2.sds.eval.TTS_speech_quality import TTS_psuedomos | |
from espnet2.sds.eval.LLM_Metrics import perplexity, vert, bert_score, DialoGPT_perplexity | |
from espnet2.sds.utils.chat import Chat | |
from espnet2.sds.end_to_end.mini_omni_e2e import MiniOmniE2EModel | |
import argparse | |
import torch | |
access_token = os.environ.get("HF_TOKEN") | |
ASR_name="pyf98/owsm_ctc_v3.1_1B" | |
LLM_name="meta-llama/Llama-3.2-1B-Instruct" | |
TTS_name="kan-bayashi/ljspeech_vits" | |
ASR_options="pyf98/owsm_ctc_v3.1_1B,espnet/owsm_ctc_v3.2_ft_1B,espnet/owsm_v3.1_ebf,librispeech_asr,whisper".split(",") | |
LLM_options="meta-llama/Llama-3.2-1B-Instruct,HuggingFaceTB/SmolLM2-1.7B-Instruct".split(",") | |
TTS_options="kan-bayashi/ljspeech_vits,kan-bayashi/libritts_xvector_vits,kan-bayashi/vctk_multi_spk_vits,ChatTTS".split(",") | |
Eval_options="Latency,TTS Intelligibility,TTS Speech Quality,ASR WER,Text Dialog Metrics" | |
upload_to_hub=None | |
ASR_curr_name=None | |
LLM_curr_name=None | |
TTS_curr_name=None | |
# def read_args(): | |
# global access_token | |
# global ASR_name | |
# global LLM_name | |
# global TTS_name | |
# global ASR_options | |
# global LLM_options | |
# global TTS_options | |
# global Eval_options | |
# global upload_to_hub | |
# parser = argparse.ArgumentParser(description="Run the app with HF_TOKEN as a command-line argument.") | |
# parser.add_argument("--HF_TOKEN", required=True, help="Provide the Hugging Face token.") | |
# parser.add_argument("--asr_options", required=True, help="Provide the possible ASR options available to user.") | |
# parser.add_argument("--llm_options", required=True, help="Provide the possible LLM options available to user.") | |
# parser.add_argument("--tts_options", required=True, help="Provide the possible TTS options available to user.") | |
# parser.add_argument("--eval_options", required=True, help="Provide the possible automatic evaluation metrics available to user.") | |
# parser.add_argument("--default_asr_model", required=False, default="pyf98/owsm_ctc_v3.1_1B", help="Provide the default ASR model.") | |
# parser.add_argument("--default_llm_model", required=False, default="meta-llama/Llama-3.2-1B-Instruct", help="Provide the default ASR model.") | |
# parser.add_argument("--default_tts_model", required=False, default="kan-bayashi/ljspeech_vits", help="Provide the default ASR model.") | |
# parser.add_argument("--upload_to_hub", required=False, default=None, help="Hugging Face dataset to upload user data") | |
# args = parser.parse_args() | |
# access_token=args.HF_TOKEN | |
# ASR_name=args.default_asr_model | |
# LLM_name=args.default_llm_model | |
# TTS_name=args.default_tts_model | |
# ASR_options=args.asr_options.split(",") | |
# LLM_options=args.llm_options.split(",") | |
# TTS_options=args.tts_options.split(",") | |
# Eval_options=args.eval_options.split(",") | |
# upload_to_hub=args.upload_to_hub | |
# read_args() | |
from huggingface_hub import HfApi | |
api = HfApi() | |
import nltk | |
nltk.download('averaged_perceptron_tagger_eng') | |
import gradio as gr | |
import numpy as np | |
chat = Chat(2) | |
chat.init_chat({"role": "system", "content": "You are a helpful and friendly AI assistant. The user is talking to you with their voice and you should respond in a conversational style. You are polite, respectful, and aim to provide concise and complete responses of less than 15 words."}) | |
user_role = "user" | |
text2speech=None | |
s2t=None | |
LM_pipe=None | |
client=None | |
latency_ASR=0.0 | |
latency_LM=0.0 | |
latency_TTS=0.0 | |
text_str="" | |
asr_output_str="" | |
vad_output=None | |
audio_output = None | |
audio_output1 = None | |
LLM_response_arr=[] | |
total_response_arr=[] | |
def handle_selection(option): | |
global TTS_curr_name | |
if TTS_curr_name is not None: | |
if option==TTS_curr_name: | |
return | |
yield gr.Textbox(visible=False),gr.Textbox(visible=False),gr.Audio(visible=False) | |
global text2speech | |
TTS_curr_name=option | |
tag = option | |
if tag=="ChatTTS": | |
text2speech = ChatTTSModel() | |
else: | |
text2speech = ESPnetTTSModel(tag) | |
text2speech.warmup() | |
yield gr.Textbox(visible=True),gr.Textbox(visible=True),gr.Audio(visible=True) | |
def handle_LLM_selection(option): | |
global LLM_curr_name | |
if LLM_curr_name is not None: | |
if option==LLM_curr_name: | |
return | |
yield gr.Textbox(visible=False),gr.Textbox(visible=False),gr.Audio(visible=False) | |
global LM_pipe | |
LLM_curr_name=option | |
LM_pipe = HuggingFaceLLM(access_token=access_token,tag = option) | |
LM_pipe.warmup() | |
yield gr.Textbox(visible=True),gr.Textbox(visible=True),gr.Audio(visible=True) | |
def handle_ASR_selection(option): | |
global ASR_curr_name | |
if option=="librispeech_asr": | |
option="espnet/simpleoier_librispeech_asr_train_asr_conformer7_wavlm_large_raw_en_bpe5000_sp" | |
if ASR_curr_name is not None: | |
if option==ASR_curr_name: | |
return | |
yield gr.Textbox(visible=False),gr.Textbox(visible=False),gr.Audio(visible=False) | |
global s2t | |
ASR_curr_name=option | |
if option=="espnet/owsm_v3.1_ebf": | |
s2t = OWSMModel() | |
elif option=="espnet/simpleoier_librispeech_asr_train_asr_conformer7_wavlm_large_raw_en_bpe5000_sp": | |
s2t = ESPnetASRModel(tag=option) | |
elif option=="whisper": | |
s2t = WhisperASRModel() | |
else: | |
s2t = OWSMCTCModel(tag=option) | |
s2t.warmup() | |
yield gr.Textbox(visible=True),gr.Textbox(visible=True),gr.Audio(visible=True) | |
def handle_eval_selection(option, TTS_audio_output, LLM_Output, ASR_audio_output, ASR_transcript): | |
global LLM_response_arr | |
global total_response_arr | |
yield (option,gr.Textbox(visible=True)) | |
if option=="Latency": | |
text=f"ASR Latency: {latency_ASR:.2f}\nLLM Latency: {latency_LM:.2f}\nTTS Latency: {latency_TTS:.2f}" | |
yield (None,text) | |
elif option=="TTS Intelligibility": | |
yield (None,handle_espnet_TTS_intelligibility(TTS_audio_output,LLM_Output)) | |
elif option=="TTS Speech Quality": | |
yield (None,TTS_psuedomos(TTS_audio_output)) | |
elif option=="ASR WER": | |
yield (None,handle_espnet_ASR_WER(ASR_audio_output, ASR_transcript)) | |
elif option=="Text Dialog Metrics": | |
yield (None,perplexity(LLM_Output.replace("\n"," "))+vert(LLM_response_arr)+bert_score(total_response_arr)+DialoGPT_perplexity(ASR_transcript.replace("\n"," "),LLM_Output.replace("\n"," "))) | |
def handle_eval_selection_E2E(option, TTS_audio_output, LLM_Output): | |
global LLM_response_arr | |
global total_response_arr | |
yield (option,gr.Textbox(visible=True)) | |
if option=="Latency": | |
text=f"Total Latency: {latency_TTS:.2f}" | |
yield (None,text) | |
elif option=="TTS Intelligibility": | |
yield (None,handle_espnet_TTS_intelligibility(TTS_audio_output,LLM_Output)) | |
elif option=="TTS Speech Quality": | |
yield (None,TTS_psuedomos(TTS_audio_output)) | |
elif option=="Text Dialog Metrics": | |
yield (None,perplexity(LLM_Output.replace("\n"," "))+vert(LLM_response_arr)) | |
def handle_type_selection(option,TTS_radio,ASR_radio,LLM_radio): | |
global client | |
global LM_pipe | |
global s2t | |
global text2speech | |
yield (gr.Radio(visible=False),gr.Radio(visible=False),gr.Radio(visible=False),gr.Radio(visible=False), gr.Textbox(visible=False),gr.Textbox(visible=False),gr.Audio(visible=False),gr.Radio(visible=False),gr.Radio(visible=False)) | |
if option=="Cascaded": | |
client=None | |
for _ in handle_selection(TTS_radio): | |
continue | |
for _ in handle_ASR_selection(ASR_radio): | |
continue | |
for _ in handle_LLM_selection(LLM_radio): | |
continue | |
yield (gr.Radio(visible=True),gr.Radio(visible=True),gr.Radio(visible=True),gr.Radio(visible=False),gr.Textbox(visible=True),gr.Textbox(visible=True),gr.Audio(visible=True),gr.Radio(visible=True, interactive=True),gr.Radio(visible=False)) | |
else: | |
text2speech=None | |
s2t=None | |
LM_pipe=None | |
global ASR_curr_name | |
global LLM_curr_name | |
global TTS_curr_name | |
ASR_curr_name=None | |
LLM_curr_name=None | |
TTS_curr_name=None | |
handle_E2E_selection() | |
yield (gr.Radio(visible=False),gr.Radio(visible=False),gr.Radio(visible=False),gr.Radio(visible=True),gr.Textbox(visible=True),gr.Textbox(visible=True),gr.Audio(visible=True),gr.Radio(visible=False),gr.Radio(visible=True, interactive=True)) | |
def handle_E2E_selection(): | |
global client | |
if client is None: | |
client = MiniOmniE2EModel() | |
client.warmup() | |
def start_warmup(): | |
global client | |
for opt in ASR_options: | |
if opt==ASR_name: | |
continue | |
print(opt) | |
for _ in handle_ASR_selection(opt): | |
continue | |
for opt in LLM_options: | |
if opt==LLM_name: | |
continue | |
print(opt) | |
for _ in handle_LLM_selection(opt): | |
continue | |
for opt in TTS_options: | |
if opt==TTS_name: | |
continue | |
print(opt) | |
for _ in handle_selection(opt): | |
continue | |
handle_E2E_selection() | |
client=None | |
for _ in handle_selection(TTS_name): | |
continue | |
for _ in handle_ASR_selection(ASR_name): | |
continue | |
for _ in handle_LLM_selection(LLM_name): | |
continue | |
dummy_input = torch.randn( | |
(3000), | |
dtype=getattr(torch, "float16"), | |
device="cpu", | |
).cpu().numpy() | |
dummy_text="This is dummy text" | |
for opt in Eval_options: | |
handle_eval_selection(opt, dummy_input, dummy_text, dummy_input, dummy_text) | |
start_warmup() | |
vad_model=WebrtcVADModel() | |
callback = gr.CSVLogger() | |
start_record_time=None | |
enable_btn = gr.Button(interactive=True, visible=True) | |
disable_btn = gr.Button(interactive=False, visible=False) | |
def flash_buttons(): | |
btn_updates = (enable_btn,) * 8 | |
print(enable_btn) | |
yield ("","",)+btn_updates | |
def get_ip(request: gr.Request): | |
if "cf-connecting-ip" in request.headers: | |
ip = request.headers["cf-connecting-ip"] | |
elif "x-forwarded-for" in request.headers: | |
ip = request.headers["x-forwarded-for"] | |
if "," in ip: | |
ip = ip.split(",")[0] | |
else: | |
ip = request.client.host | |
return ip | |
def vote_last_response(vote_type, request: gr.Request): | |
with open("save_dict.json", "a") as fout: | |
data = { | |
"tstamp": round(time.time(), 4), | |
"type": vote_type, | |
"ip": get_ip(request), | |
} | |
fout.write(json.dumps(data) + "\n") | |
def natural_vote1_last_response( | |
request: gr.Request | |
): | |
ip_address1=get_ip(request) | |
print(f"Very Natural (voted). ip: {ip_address1}") | |
return ("Very Natural",ip_address1,)+(disable_btn,) * 4 | |
def natural_vote2_last_response( | |
request: gr.Request | |
): | |
ip_address1=get_ip(request) | |
print(f"Somewhat Awkward (voted). ip: {ip_address1}") | |
return ("Somewhat Awkward",ip_address1,)+(disable_btn,) * 4 | |
def natural_vote3_last_response( | |
request: gr.Request | |
): | |
ip_address1=get_ip(request) | |
print(f"Very Awkward (voted). ip: {ip_address1}") | |
return ("Very Awkward",ip_address1,)+(disable_btn,) * 4 | |
def natural_vote4_last_response( | |
request: gr.Request | |
): | |
ip_address1=get_ip(request) | |
print(f"Unnatural (voted). ip: {ip_address1}") | |
return ("Unnatural",ip_address1,)+(disable_btn,) * 4 | |
def relevant_vote1_last_response( | |
request: gr.Request | |
): | |
ip_address1=get_ip(request) | |
print(f"Highly Relevant (voted). ip: {ip_address1}") | |
return ("Highly Relevant",ip_address1,)+(disable_btn,) * 4 | |
def relevant_vote2_last_response( | |
request: gr.Request | |
): | |
ip_address1=get_ip(request) | |
print(f"Partially Relevant (voted). ip: {ip_address1}") | |
return ("Partially Relevant",ip_address1,)+(disable_btn,) * 4 | |
def relevant_vote3_last_response( | |
request: gr.Request | |
): | |
ip_address1=get_ip(request) | |
print(f"Slightly Irrelevant (voted). ip: {ip_address1}") | |
return ("Slightly Irrelevant",ip_address1,)+(disable_btn,) * 4 | |
def relevant_vote4_last_response( | |
request: gr.Request | |
): | |
ip_address1=get_ip(request) | |
print(f"Completely Irrelevant (voted). ip: {ip_address1}") | |
return ("Completely Irrelevant",ip_address1,)+(disable_btn,) * 4 | |
import json | |
import time | |
def transcribe(stream, new_chunk, TTS_option, ASR_option, LLM_option, type_option): | |
sr, y = new_chunk | |
global text_str | |
global chat | |
global user_role | |
global audio_output | |
global audio_output1 | |
global vad_output | |
global asr_output_str | |
global start_record_time | |
global sids | |
global spembs | |
global latency_ASR | |
global latency_LM | |
global latency_TTS | |
global LLM_response_arr | |
global total_response_arr | |
if stream is None: | |
# Handle user refresh | |
# import pdb;pdb.set_trace() | |
for (_,_,_,_,asr_output_box,text_box,audio_box,_,_) in handle_type_selection(type_option,TTS_option,ASR_option,LLM_option): | |
gr.Info("The models are being reloaded due to a browser refresh.") | |
yield (stream,asr_output_box,text_box,audio_box,gr.Audio(visible=False)) | |
stream=y | |
chat.init_chat({"role": "system", "content": "You are a helpful and friendly AI assistant. You are polite, respectful, and aim to provide concise and complete responses of less than 15 words."}) | |
text_str="" | |
audio_output = None | |
audio_output1 = None | |
else: | |
stream=np.concatenate((stream,y)) | |
orig_sr=sr | |
sr=16000 | |
if client is not None: | |
array=vad_model(y,orig_sr, binary=True) | |
else: | |
array=vad_model(y,orig_sr) | |
if array is not None: | |
print("VAD: end of speech detected") | |
start_time = time.time() | |
if client is not None: | |
try: | |
(text_str, audio_output)=client(array, orig_sr) | |
except Exception as e: | |
text_str="" | |
audio_output=None | |
raise gr.Error(f"Error during audio streaming: {e}") | |
asr_output_str="" | |
latency_TTS=(time.time() - start_time) | |
else: | |
prompt=s2t(array) | |
if len(prompt.strip().split())<2: | |
text_str1=text_str | |
yield (stream, asr_output_str, text_str1, audio_output, audio_output1) | |
return | |
asr_output_str=prompt | |
total_response_arr.append(prompt.replace("\n"," ")) | |
start_LM_time=time.time() | |
latency_ASR=(start_LM_time - start_time) | |
chat.append({"role": user_role, "content": prompt}) | |
chat_messages = chat.to_list() | |
generated_text = LM_pipe(chat_messages) | |
start_TTS_time=time.time() | |
latency_LM=(start_TTS_time - start_LM_time) | |
chat.append({"role": "assistant", "content": generated_text}) | |
text_str=generated_text | |
audio_output=text2speech(text_str) | |
latency_TTS=(time.time() - start_TTS_time) | |
audio_output1=(orig_sr,stream) | |
stream=y | |
LLM_response_arr.append(text_str.replace("\n"," ")) | |
total_response_arr.append(text_str.replace("\n"," ")) | |
text_str1=text_str | |
if ((text_str!="") and (start_record_time is None)): | |
start_record_time=time.time() | |
elif start_record_time is not None: | |
current_record_time=time.time() | |
if current_record_time-start_record_time>300: | |
gr.Info("Conversations are limited to 5 minutes. The session will restart in approximately 60 seconds. Please wait for the demo to reset. Close this message once you have read it.", duration=None) | |
yield stream,gr.Textbox(visible=False),gr.Textbox(visible=False),gr.Audio(visible=False),gr.Audio(visible=False) | |
if upload_to_hub is not None: | |
api.upload_folder( | |
folder_path="flagged_data_points", | |
path_in_repo="checkpoint_"+str(start_record_time), | |
repo_id=upload_to_hub, | |
repo_type="dataset", | |
token=access_token, | |
) | |
chat.buffer=[{"role": "system", "content": "You are a helpful and friendly AI assistant. You are polite, respectful, and aim to provide concise and complete responses of less than 15 words."}] | |
text_str="" | |
audio_output = None | |
audio_output1 = None | |
asr_output_str = "" | |
start_record_time = None | |
LLM_response_arr=[] | |
total_response_arr=[] | |
shutil.rmtree('flagged_data_points') | |
os.mkdir("flagged_data_points") | |
yield (stream,asr_output_str,text_str1, audio_output, audio_output1) | |
yield stream,gr.Textbox(visible=True),gr.Textbox(visible=True),gr.Audio(visible=True),gr.Audio(visible=False) | |
yield (stream,asr_output_str,text_str1, audio_output, audio_output1) | |
with gr.Blocks( | |
title="E2E Spoken Dialog System", | |
) as demo: | |
with gr.Row(): | |
with gr.Column(scale=1): | |
user_audio = gr.Audio(sources=["microphone"], streaming=True, waveform_options=gr.WaveformOptions(sample_rate=16000)) | |
with gr.Row(): | |
type_radio = gr.Radio( | |
choices=["Cascaded", "E2E"], | |
label="Choose type of Spoken Dialog:", | |
value="Cascaded", | |
) | |
with gr.Row(): | |
ASR_radio = gr.Radio( | |
choices=ASR_options, | |
label="Choose ASR:", | |
value=ASR_name, | |
) | |
with gr.Row(): | |
LLM_radio = gr.Radio( | |
choices=LLM_options, | |
label="Choose LLM:", | |
value=LLM_name, | |
) | |
with gr.Row(): | |
radio = gr.Radio( | |
choices=TTS_options, | |
label="Choose TTS:", | |
value=TTS_name, | |
) | |
with gr.Row(): | |
E2Eradio = gr.Radio( | |
choices=["mini-omni"], | |
label="Choose E2E model:", | |
value="mini-omni", | |
visible=False, | |
) | |
with gr.Row(): | |
feedback_btn = gr.Button( | |
value="Please provide your feedback after each system response below.", visible=True, interactive=False, elem_id="button" | |
) | |
with gr.Row(): | |
natural_btn1 = gr.Button( | |
value="Very Natural", visible=False, interactive=False, scale=1 | |
) | |
natural_btn2 = gr.Button( | |
value="Somewhat Awkward", visible=False, interactive=False, scale=1 | |
) | |
natural_btn3 = gr.Button(value="Very Awkward", visible=False, interactive=False, scale=1) | |
natural_btn4 = gr.Button( | |
value="Unnatural", visible=False, interactive=False, scale=1 | |
) | |
with gr.Row(): | |
relevant_btn1 = gr.Button( | |
value="Highly Relevant", visible=False, interactive=False, scale=1 | |
) | |
relevant_btn2 = gr.Button( | |
value="Partially Relevant", visible=False, interactive=False, scale=1 | |
) | |
relevant_btn3 = gr.Button(value="Slightly Irrelevant", visible=False, interactive=False, scale=1) | |
relevant_btn4 = gr.Button( | |
value= "Completely Irrelevant", visible=False, interactive=False, scale=1 | |
) | |
with gr.Column(scale=1): | |
output_audio = gr.Audio(label="Output", interactive=False, autoplay=True, visible=True) | |
output_audio1 = gr.Audio(label="Output1", autoplay=False, visible=False) | |
output_asr_text = gr.Textbox(label="ASR output", interactive=False) | |
output_text = gr.Textbox(label="LLM output", interactive=False) | |
eval_radio = gr.Radio( | |
choices=["Latency", "TTS Intelligibility", "TTS Speech Quality", "ASR WER","Text Dialog Metrics"], | |
label="Choose Evaluation metrics:", | |
) | |
eval_radio_E2E = gr.Radio( | |
choices=["Latency", "TTS Intelligibility", "TTS Speech Quality","Text Dialog Metrics"], | |
label="Choose Evaluation metrics:", | |
visible=False, | |
) | |
output_eval_text = gr.Textbox(label="Evaluation Results") | |
state = gr.State() | |
with gr.Row(): | |
privacy_text = gr.Textbox(label="Privacy Notice",interactive=False, value="By using this demo, you acknowledge that interactions with this dialog system are collected for research and improvement purposes. The data will only be used to enhance the performance and understanding of the system. If you have any concerns about data collection, please discontinue use.") | |
btn_list=[ | |
natural_btn1, | |
natural_btn2, | |
natural_btn3, | |
natural_btn4, | |
relevant_btn1, | |
relevant_btn2, | |
relevant_btn3, | |
relevant_btn4, | |
] | |
natural_btn_list=[ | |
natural_btn1, | |
natural_btn2, | |
natural_btn3, | |
natural_btn4, | |
] | |
relevant_btn_list=[ | |
relevant_btn1, | |
relevant_btn2, | |
relevant_btn3, | |
relevant_btn4, | |
] | |
natural_response = gr.Textbox(label="natural_response",visible=False,interactive=False) | |
diversity_response = gr.Textbox(label="diversity_response",visible=False,interactive=False) | |
ip_address = gr.Textbox(label="ip_address",visible=False,interactive=False) | |
callback.setup([user_audio, output_asr_text, output_text, output_audio,output_audio1,type_radio, ASR_radio, LLM_radio, radio, E2Eradio, natural_response,diversity_response,ip_address],"flagged_data_points") | |
user_audio.stream(transcribe, inputs=[state, user_audio, radio, ASR_radio, LLM_radio, type_radio], outputs=[state, output_asr_text, output_text, output_audio, output_audio1]).then(lambda *args: callback.flag(list(args)),[user_audio], None,preprocess=False) | |
radio.change(fn=handle_selection, inputs=[radio], outputs=[output_asr_text, output_text, output_audio]) | |
LLM_radio.change(fn=handle_LLM_selection, inputs=[LLM_radio], outputs=[output_asr_text, output_text, output_audio]) | |
ASR_radio.change(fn=handle_ASR_selection, inputs=[ASR_radio], outputs=[output_asr_text, output_text, output_audio]) | |
eval_radio.change(fn=handle_eval_selection, inputs=[eval_radio,output_audio,output_text,output_audio1,output_asr_text], outputs=[eval_radio,output_eval_text]) | |
eval_radio_E2E.change(fn=handle_eval_selection_E2E, inputs=[eval_radio_E2E,output_audio,output_text], outputs=[eval_radio_E2E,output_eval_text]) | |
type_radio.change(fn=handle_type_selection,inputs=[type_radio,radio,ASR_radio,LLM_radio], outputs=[radio,ASR_radio,LLM_radio, E2Eradio,output_asr_text, output_text, output_audio,eval_radio,eval_radio_E2E]) | |
output_audio.play( | |
flash_buttons, [], [natural_response,diversity_response]+btn_list | |
).then(lambda *args: callback.flag(list(args)),[user_audio,output_asr_text, output_text, output_audio,output_audio1,type_radio, ASR_radio, LLM_radio, radio, E2Eradio], None,preprocess=False) | |
natural_btn1.click(natural_vote1_last_response,[],[natural_response,ip_address]+natural_btn_list).then(lambda *args: callback.flag(list(args)),[user_audio,output_asr_text, output_text, output_audio,output_audio1,type_radio, ASR_radio, LLM_radio, radio, E2Eradio, natural_response,diversity_response,ip_address], None,preprocess=False) | |
natural_btn2.click(natural_vote2_last_response,[],[natural_response,ip_address]+natural_btn_list).then(lambda *args: callback.flag(list(args)),[user_audio,output_asr_text, output_text, output_audio,output_audio1,type_radio, ASR_radio, LLM_radio, radio, E2Eradio, natural_response,diversity_response,ip_address], None,preprocess=False) | |
natural_btn3.click(natural_vote3_last_response,[],[natural_response,ip_address]+natural_btn_list).then(lambda *args: callback.flag(list(args)),[user_audio,output_asr_text, output_text, output_audio,output_audio1,type_radio, ASR_radio, LLM_radio, radio, E2Eradio, natural_response,diversity_response,ip_address], None,preprocess=False) | |
natural_btn4.click(natural_vote4_last_response,[],[natural_response,ip_address]+natural_btn_list).then(lambda *args: callback.flag(list(args)),[user_audio,output_asr_text, output_text, output_audio,output_audio1,type_radio, ASR_radio, LLM_radio, radio, E2Eradio, natural_response,diversity_response,ip_address], None,preprocess=False) | |
relevant_btn1.click(relevant_vote1_last_response,[],[diversity_response,ip_address]+relevant_btn_list).then(lambda *args: callback.flag(list(args)),[user_audio,output_asr_text, output_text, output_audio,output_audio1,type_radio, ASR_radio, LLM_radio, radio, E2Eradio, natural_response,diversity_response,ip_address], None,preprocess=False) | |
relevant_btn2.click(relevant_vote2_last_response,[],[diversity_response,ip_address]+relevant_btn_list).then(lambda *args: callback.flag(list(args)),[user_audio,output_asr_text, output_text, output_audio,output_audio1,type_radio, ASR_radio, LLM_radio, radio, E2Eradio, natural_response,diversity_response,ip_address], None,preprocess=False) | |
relevant_btn3.click(relevant_vote3_last_response,[],[diversity_response,ip_address]+relevant_btn_list).then(lambda *args: callback.flag(list(args)),[user_audio,output_asr_text, output_text, output_audio,output_audio1,type_radio, ASR_radio, LLM_radio, radio, E2Eradio, natural_response,diversity_response,ip_address], None,preprocess=False) | |
relevant_btn4.click(relevant_vote4_last_response,[],[diversity_response,ip_address]+relevant_btn_list).then(lambda *args: callback.flag(list(args)),[user_audio,output_asr_text, output_text, output_audio,output_audio1,type_radio, ASR_radio, LLM_radio, radio, E2Eradio, natural_response,diversity_response,ip_address], None,preprocess=False) | |
demo.launch(share=True) | |