Voice_Assistant_TTS_long / STT /lightning_whisper_mlx_handler.py
Siddhant's picture
Upload 5 files
d4b17a2 verified
raw
history blame
1.61 kB
import logging
from time import perf_counter
from baseHandler import BaseHandler
from lightning_whisper_mlx import LightningWhisperMLX
import numpy as np
from rich.console import Console
import torch
logging.basicConfig(
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
)
logger = logging.getLogger(__name__)
console = Console()
class LightningWhisperSTTHandler(BaseHandler):
"""
Handles the Speech To Text generation using a Whisper model.
"""
def setup(
self,
model_name="distil-large-v3",
device="cuda",
torch_dtype="float16",
compile_mode=None,
gen_kwargs={},
):
if len(model_name.split("/")) > 1:
model_name = model_name.split("/")[-1]
self.device = device
self.model = LightningWhisperMLX(model=model_name, batch_size=6, quant=None)
self.warmup()
def warmup(self):
logger.info(f"Warming up {self.__class__.__name__}")
# 2 warmup steps for no compile or compile mode with CUDA graphs capture
n_steps = 1
dummy_input = np.array([0] * 512)
for _ in range(n_steps):
_ = self.model.transcribe(dummy_input)["text"].strip()
def process(self, spoken_prompt):
logger.debug("infering whisper...")
global pipeline_start
pipeline_start = perf_counter()
pred_text = self.model.transcribe(spoken_prompt)["text"].strip()
torch.mps.empty_cache()
logger.debug("finished whisper inference")
console.print(f"[yellow]USER: {pred_text}")
yield pred_text