Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -72,7 +72,7 @@ ASR_model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
|
72 |
).to("cpu")
|
73 |
LM_tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM-360M-Instruct")
|
74 |
LM_model = AutoModelForCausalLM.from_pretrained(
|
75 |
-
"HuggingFaceTB/SmolLM-360M-Instruct", torch_dtype=
|
76 |
).to("cpu")
|
77 |
LM_pipe = pipeline(
|
78 |
"text-generation", model=LM_model, tokenizer=LM_tokenizer, device="cpu"
|
@@ -109,7 +109,7 @@ def transcribe(stream, new_chunk):
|
|
109 |
duration_ms = len(array) / sr * 1000
|
110 |
if (not(duration_ms < min_speech_ms or duration_ms > max_speech_ms)):
|
111 |
input_features = ASR_processor(
|
112 |
-
|
113 |
).input_features
|
114 |
input_features = input_features.to("cpu", dtype="float16")
|
115 |
pred_ids = ASR_model.generate(input_features, gen_max_new_tokens=128, gen_min_new_tokens=0, gen_num_beams=1, gen_return_timestamps=False,gen_task="transcribe",gen_language="en")
|
@@ -119,7 +119,7 @@ def transcribe(stream, new_chunk):
|
|
119 |
# prompt=ASR_model.transcribe(array)["text"].strip()
|
120 |
chat.append({"role": user_role, "content": prompt})
|
121 |
chat_messages = chat.to_list()
|
122 |
-
output=
|
123 |
chat_messages,
|
124 |
gen_max_new_tokens=128,
|
125 |
gen_min_new_tokens=0,
|
|
|
72 |
).to("cpu")
|
73 |
LM_tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM-360M-Instruct")
|
74 |
LM_model = AutoModelForCausalLM.from_pretrained(
|
75 |
+
"HuggingFaceTB/SmolLM-360M-Instruct", torch_dtype="float16", trust_remote_code=True
|
76 |
).to("cpu")
|
77 |
LM_pipe = pipeline(
|
78 |
"text-generation", model=LM_model, tokenizer=LM_tokenizer, device="cpu"
|
|
|
109 |
duration_ms = len(array) / sr * 1000
|
110 |
if (not(duration_ms < min_speech_ms or duration_ms > max_speech_ms)):
|
111 |
input_features = ASR_processor(
|
112 |
+
array, sampling_rate=16000, return_tensors="pt"
|
113 |
).input_features
|
114 |
input_features = input_features.to("cpu", dtype="float16")
|
115 |
pred_ids = ASR_model.generate(input_features, gen_max_new_tokens=128, gen_min_new_tokens=0, gen_num_beams=1, gen_return_timestamps=False,gen_task="transcribe",gen_language="en")
|
|
|
119 |
# prompt=ASR_model.transcribe(array)["text"].strip()
|
120 |
chat.append({"role": user_role, "content": prompt})
|
121 |
chat_messages = chat.to_list()
|
122 |
+
output=LM_pipe(
|
123 |
chat_messages,
|
124 |
gen_max_new_tokens=128,
|
125 |
gen_min_new_tokens=0,
|