S12 / model /network.py
Sijuade's picture
Create model/network.py
a1539a5
raw
history blame
4.15 kB
import torch
from torch import nn
from torch.nn import functional as F
import pytorch_lightning as pl
import torchmetrics
from torch.optim.lr_scheduler import OneCycleLR
from torchmetrics.functional import accuracy
class ResBlock(nn.Module):
def __init__(self, in_channel, out_channel, stride=1):
super(ResBlock, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channel, in_channel, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(in_channel),
nn.ReLU(),
nn.Conv2d(in_channel, out_channel, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(out_channel),
nn.ReLU(),
)
def forward(self, x):
return(self.conv(x))
class ResNet18(pl.LightningModule):
def __init__(self, train_loader_len, criterion, num_classes=10, lr=0.001, max_lr=1.45E-03):
super().__init__()
self.save_hyperparameters(ignore=['criterion'])
self.criterion = criterion
self.train_loader_len = train_loader_len
self.accuracy = torchmetrics.Accuracy(task="multiclass", num_classes=self.hparams.num_classes)
self.prep_layer = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU()
)
self.layer_one = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=False),
nn.MaxPool2d(2,2),
nn.BatchNorm2d(128),
nn.ReLU()
)
self.res_block1 = ResBlock(128, 128)
self.layer_two = nn.Sequential(
nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1, bias=False),
nn.MaxPool2d(2,2),
nn.BatchNorm2d(256),
nn.ReLU()
)
self.layer_three = nn.Sequential(
nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1, bias=False),
nn.MaxPool2d(2,2),
nn.BatchNorm2d(512),
nn.ReLU()
)
self.res_block2 = ResBlock(512, 512)
self.max_pool = nn.MaxPool2d(4,4)
self.fc = nn.Linear(512, num_classes, bias=False)
def forward(self, x):
x = self.prep_layer(x)
x = self.layer_one(x)
R1 = self.res_block1(x)
x = x + R1
x = self.layer_two(x)
x = self.layer_three(x)
R2 = self.res_block2(x)
x = x + R2
x = self.max_pool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return(x)
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=self.hparams.lr, weight_decay=1e-4)
scheduler = OneCycleLR(
optimizer,
max_lr=self.hparams.max_lr,
epochs=self.trainer.max_epochs,
steps_per_epoch=self.train_loader_len,
pct_start=5/self.trainer.max_epochs,
div_factor=100,
three_phase=False,
)
if self.hparams.max_lr==1.45E-03:
return(optimizer)
else:
return([optimizer], [scheduler])
def training_step(self, train_batch, batch_idx):
data, target = train_batch
y_pred = self(data)
loss = self.criterion(y_pred, target)
pred = torch.argmax(y_pred.squeeze(), dim=1)
acc = accuracy(pred, target, task="multiclass", num_classes=self.hparams.num_classes)
self.log('train_loss', loss, prog_bar=True, on_step=False, on_epoch=True)
self.log('train_acc', acc, prog_bar=True, on_step=False, on_epoch=True)
return(loss)
def validation_step(self, batch, batch_idx):
return(self.evaluate(batch, 'val'))
def test_step(self, batch, batch_idx):
return(self.evaluate(batch, 'test'))
def evaluate(self, batch, stage=None):
data, target = batch
y_pred = self(data)
loss = self.criterion(y_pred, target).item()
pred = torch.argmax(y_pred.squeeze(), dim=1)
acc = accuracy(pred, target, task="multiclass", num_classes=self.hparams.num_classes)
if stage:
self.log(f"{stage}_loss", loss, prog_bar=True, on_step=False, on_epoch=True)
self.log(f"{stage}_acc", acc, prog_bar=True, on_step=False, on_epoch=True)
return pred, target