Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch, torchvision
|
2 |
+
from torchvision import transforms
|
3 |
+
import numpy as np
|
4 |
+
import gradio as gr
|
5 |
+
from PIL import Image
|
6 |
+
from pytorch_grad_cam import GradCAM
|
7 |
+
from pytorch_grad_cam.utils.image import show_cam_on_image
|
8 |
+
from model.network import ResNet18
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
import PIL
|
11 |
+
import io
|
12 |
+
from PIL import Image
|
13 |
+
|
14 |
+
from model.network import *
|
15 |
+
from utils.gradio_utils import *
|
16 |
+
from augment.augment import *
|
17 |
+
from dataset.dataset import *
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
model = ResNet18(20, None)
|
22 |
+
model = model.load_from_checkpoint("resnet18.ckpt", map_location=torch.device("cpu"))
|
23 |
+
|
24 |
+
dataloader_args = dict(shuffle=True, batch_size=64)
|
25 |
+
_, test_transforms = get_transforms(mu, std)
|
26 |
+
|
27 |
+
test = CIFAR10Dataset(transform=test_transforms, train=False)
|
28 |
+
test_loader = torch.utils.data.DataLoader(test, **dataloader_args)
|
29 |
+
|
30 |
+
target_layers = [model.res_block2.conv[-1]]
|
31 |
+
targets = None
|
32 |
+
device = torch.device("cpu")
|
33 |
+
|
34 |
+
examples = get_examples()
|
35 |
+
|
36 |
+
def upload_image_inference(input_img, n_top_classes, transparency):
|
37 |
+
|
38 |
+
org_img = input_img.copy()
|
39 |
+
|
40 |
+
input_img = test_transforms(image=org_img)['image']
|
41 |
+
input_img = input_img.unsqueeze(0)
|
42 |
+
|
43 |
+
outputs = model(input_img)
|
44 |
+
|
45 |
+
softmax = torch.nn.Softmax(dim=0)
|
46 |
+
o = softmax(outputs.flatten())
|
47 |
+
confidences = {classes[i]: float(o[i]) for i in range(n_top_classes)}
|
48 |
+
_, prediction = torch.max(outputs, 1)
|
49 |
+
|
50 |
+
cam = GradCAM(model=model, target_layers=target_layers)
|
51 |
+
|
52 |
+
grayscale_cam = cam(input_tensor=input_img, targets=None)
|
53 |
+
grayscale_cam = grayscale_cam[0, :]
|
54 |
+
img = input_img.squeeze(0)
|
55 |
+
img = inv_normalize(img)
|
56 |
+
|
57 |
+
rgb_img = np.transpose(img.cpu(), (1, 2, 0))
|
58 |
+
rgb_img = rgb_img.numpy()
|
59 |
+
visualization = show_cam_on_image(org_img/255, grayscale_cam, use_rgb=True, image_weight=transparency)
|
60 |
+
|
61 |
+
return([confidences, [org_img, grayscale_cam, visualization]])
|
62 |
+
|
63 |
+
|
64 |
+
def misclass_gr(num_images, layer_val, transparency):
|
65 |
+
images_list = misclassified_data[:num_images]
|
66 |
+
|
67 |
+
images_list = [image_to_array(img, layer_val, transparency) for img in images_list]
|
68 |
+
return(images_list)
|
69 |
+
|
70 |
+
|
71 |
+
def class_gr(num_images, layer_val, transparency):
|
72 |
+
images_list = classified_data[:num_images]
|
73 |
+
|
74 |
+
images_list = [image_to_array(img, layer_val, transparency) for img in images_list]
|
75 |
+
return(images_list)
|
76 |
+
|
77 |
+
|
78 |
+
def image_to_array(input_img, layer_val, transparency=0.6):
|
79 |
+
input_tensor = input_img[0]
|
80 |
+
|
81 |
+
cam = GradCAM(model=model, target_layers=[model.res_block2.conv[-layer_val]])
|
82 |
+
grayscale_cam = cam(input_tensor=input_tensor, targets=targets)
|
83 |
+
grayscale_cam = grayscale_cam[0, :]
|
84 |
+
|
85 |
+
img = input_tensor.squeeze(0)
|
86 |
+
img = inv_normalize(img)
|
87 |
+
rgb_img = np.transpose(img, (1, 2, 0))
|
88 |
+
rgb_img = rgb_img.numpy()
|
89 |
+
|
90 |
+
visualization = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True,
|
91 |
+
image_weight=transparency)
|
92 |
+
|
93 |
+
plt.imshow(visualization)
|
94 |
+
plt.title(r"Correct: " + classes[input_img[1].item()] + '\n' + 'Output: ' + classes[input_img[2].item()])
|
95 |
+
|
96 |
+
with io.BytesIO() as buffer:
|
97 |
+
plt.savefig(buffer, format = "png")
|
98 |
+
buffer.seek(0)
|
99 |
+
image = Image.open(buffer)
|
100 |
+
ar = np.asarray(image)
|
101 |
+
|
102 |
+
return(ar)
|
103 |
+
|
104 |
+
|
105 |
+
def get_misclassified_data(model, device, test_loader):
|
106 |
+
"""
|
107 |
+
Function to run the model on test set and return misclassified images
|
108 |
+
:param model: Network Architecture
|
109 |
+
:param device: CPU/GPU
|
110 |
+
:param test_loader: DataLoader for test set
|
111 |
+
"""
|
112 |
+
mis_count = 0
|
113 |
+
correct_count = 0
|
114 |
+
|
115 |
+
# Prepare the model for evaluation i.e. drop the dropout layer
|
116 |
+
model.eval()
|
117 |
+
# List to store misclassified Images
|
118 |
+
misclassified_data, classified_data = [], []
|
119 |
+
# Reset the gradients
|
120 |
+
with torch.no_grad():
|
121 |
+
# Extract images, labels in a batch
|
122 |
+
for data, target in test_loader:
|
123 |
+
# Migrate the data to the device
|
124 |
+
data, target = data.to(device), target.to(device)
|
125 |
+
# Extract single image, label from the batch
|
126 |
+
for image, label in zip(data, target):
|
127 |
+
# Add batch dimension to the image
|
128 |
+
image = image.unsqueeze(0)
|
129 |
+
# Get the model prediction on the image
|
130 |
+
output = model(image)
|
131 |
+
# Convert the output from one-hot encoding to a value
|
132 |
+
pred = output.argmax(dim=1, keepdim=True)
|
133 |
+
# If prediction is incorrect, append the data
|
134 |
+
if pred != label:
|
135 |
+
misclassified_data.append((image, label, pred))
|
136 |
+
mis_count += 1
|
137 |
+
else:
|
138 |
+
classified_data.append((image, label, pred))
|
139 |
+
correct_count += 1
|
140 |
+
|
141 |
+
if ((mis_count>=20) and (correct_count>=20)):
|
142 |
+
return ((classified_data, misclassified_data))
|
143 |
+
|
144 |
+
|
145 |
+
title = "CIFAR10 trained on ResNet18 (Pytorch Lightning) Model with GradCAM"
|
146 |
+
description = "A simple Gradio interface to infer on ResNet model, get GradCAM results for existing & new Images"
|
147 |
+
|
148 |
+
with gr.Blocks() as gradcam:
|
149 |
+
classified_data, misclassified_data = get_misclassified_data(model, device, test_loader)
|
150 |
+
|
151 |
+
gr.Markdown("Make Grad-Cam of uploaded image, or existing images.")
|
152 |
+
with gr.Tab("Upload New Image"):
|
153 |
+
upload_input = [gr.Image(shape=(32, 32)),
|
154 |
+
gr.Number(minimum=0, maximum=10, label='n Top Classes', value=3, precision=0),
|
155 |
+
gr.Slider(0, 1, label='Transparency', value=0.6)]
|
156 |
+
|
157 |
+
upload_output = [gr.Label(label='Top Classes'),
|
158 |
+
gr.Gallery(label="Image | CAM | Image+CAM",
|
159 |
+
show_label=True, min_width=80).style(columns=[3],
|
160 |
+
rows=[1],
|
161 |
+
object_fit="contain",
|
162 |
+
height="auto")]
|
163 |
+
button1 = gr.Button("Perform Inference")
|
164 |
+
gr.Examples(
|
165 |
+
examples=examples,
|
166 |
+
inputs=upload_input,
|
167 |
+
outputs=upload_output,
|
168 |
+
fn=upload_image_inference,
|
169 |
+
cache_examples=True,
|
170 |
+
)
|
171 |
+
|
172 |
+
|
173 |
+
with gr.Tab("View Class Activate Maps"):
|
174 |
+
with gr.Row():
|
175 |
+
with gr.Column():
|
176 |
+
cam_input21 = [gr.Number(minimum=1, maximum=20, precision=0, value=3, label='View Correctly Classified CAM | Num Images'),
|
177 |
+
gr.Number(minimum=1, maximum=3, precision=0, value=1, label='(-) Target Layer'),
|
178 |
+
gr.Slider(0, 1, value=0.6, label='Transparency')]
|
179 |
+
|
180 |
+
image_output21 = gr.Gallery(label="Images - Grad-CAM (correct)",
|
181 |
+
show_label=True, min_width=80)
|
182 |
+
button21 = gr.Button("View Images")
|
183 |
+
|
184 |
+
with gr.Column():
|
185 |
+
cam_input22 = [gr.Number(minimum=1, maximum=20, precision=0, value=3, label='View Misclassified CAM | Num Images'),
|
186 |
+
gr.Number(minimum=1, maximum=3, precision=0, value=1, label='(-) Target Layer'),
|
187 |
+
gr.Slider(0, 1, value=0.6, label='Transparency')]
|
188 |
+
|
189 |
+
image_output22 = gr.Gallery(label="Images - Grad-CAM (Misclassified)",
|
190 |
+
show_label=True, min_width=80)
|
191 |
+
button22 = gr.Button("View Images")
|
192 |
+
|
193 |
+
button1.click(upload_image_inference, inputs=upload_input, outputs=upload_output)
|
194 |
+
button21.click(class_gr, inputs=cam_input21, outputs=image_output21)
|
195 |
+
button22.click(misclass_gr, inputs=cam_input22, outputs=image_output22)
|
196 |
+
|
197 |
+
|
198 |
+
|
199 |
+
gradcam.launch()
|