Chat_with_pdf / Chat_with_pdf_LLM.py
Silence1412's picture
Create Chat_with_pdf_LLM.py
1ac37c2
raw
history blame
2.21 kB
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains.question_answering import load_qa_chain
from langchain.llms import OpenAI
from langchain.callbacks import get_openai_callback
import os
from streamlit_chat import message
def LLM_pdf(model = 'google/flan-t5-large'):
# st.header("Ask your PDF 💬")
# upload file
pdf = st.file_uploader("Upload your PDF", type="pdf")
# extract the text
if pdf is not None:
pdf_reader = PdfReader(pdf)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
# split into chunks
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_text(text)
# create embeddings
embeddings = HuggingFaceEmbeddings()
knowledge_base = FAISS.from_texts(chunks, embeddings)
if 'generated' not in st.session_state:
st.session_state['generated'] = []
if 'past' not in st.session_state:
st.session_state['past'] = []
# show user input
user_question = st.text_input("Ask a question about your PDF:")
if user_question:
docs = knowledge_base.similarity_search(user_question)
llm = HuggingFaceHub(repo_id="google/flan-t5-large", model_kwargs={"temperature":5,
"max_length":64})
chain = load_qa_chain(llm, chain_type="stuff")
response = chain.run(input_documents=docs,question=user_question
#st.write(response)
st.session_state.past.append(user_question)
st.session_state.generated.append(response)
if st.session_state['generated']:
for i in range(len(st.session_state['generated'])-1, -1, -1):
message(st.session_state["generated"][i], key=str(i))
message(st.session_state['past'][i], is_user=True, key=str(i) + '_user')