Spaces:
Build error
Build error
File size: 14,000 Bytes
40e984c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
import torch
import torch.nn.functional as F
import torch.nn as nn
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
from modules.parallel_wavegan.layers import UpsampleNetwork, ConvInUpsampleNetwork
from modules.parallel_wavegan.models.source import SourceModuleHnNSF
import numpy as np
LRELU_SLOPE = 0.1
def init_weights(m, mean=0.0, std=0.01):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
m.weight.data.normal_(mean, std)
def apply_weight_norm(m):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
weight_norm(m)
def get_padding(kernel_size, dilation=1):
return int((kernel_size * dilation - dilation) / 2)
class ResBlock1(torch.nn.Module):
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)):
super(ResBlock1, self).__init__()
self.h = h
self.convs1 = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
padding=get_padding(kernel_size, dilation[2])))
])
self.convs1.apply(init_weights)
self.convs2 = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1)))
])
self.convs2.apply(init_weights)
def forward(self, x):
for c1, c2 in zip(self.convs1, self.convs2):
xt = F.leaky_relu(x, LRELU_SLOPE)
xt = c1(xt)
xt = F.leaky_relu(xt, LRELU_SLOPE)
xt = c2(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs1:
remove_weight_norm(l)
for l in self.convs2:
remove_weight_norm(l)
class ResBlock2(torch.nn.Module):
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)):
super(ResBlock2, self).__init__()
self.h = h
self.convs = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1])))
])
self.convs.apply(init_weights)
def forward(self, x):
for c in self.convs:
xt = F.leaky_relu(x, LRELU_SLOPE)
xt = c(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs:
remove_weight_norm(l)
class Conv1d1x1(Conv1d):
"""1x1 Conv1d with customized initialization."""
def __init__(self, in_channels, out_channels, bias):
"""Initialize 1x1 Conv1d module."""
super(Conv1d1x1, self).__init__(in_channels, out_channels,
kernel_size=1, padding=0,
dilation=1, bias=bias)
class HifiGanGenerator(torch.nn.Module):
def __init__(self, h, c_out=1):
super(HifiGanGenerator, self).__init__()
self.h = h
self.num_kernels = len(h['resblock_kernel_sizes'])
self.num_upsamples = len(h['upsample_rates'])
if h['use_pitch_embed']:
self.harmonic_num = 8
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(h['upsample_rates']))
self.m_source = SourceModuleHnNSF(
sampling_rate=h['audio_sample_rate'],
harmonic_num=self.harmonic_num)
self.noise_convs = nn.ModuleList()
self.conv_pre = weight_norm(Conv1d(80, h['upsample_initial_channel'], 7, 1, padding=3))
resblock = ResBlock1 if h['resblock'] == '1' else ResBlock2
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(h['upsample_rates'], h['upsample_kernel_sizes'])):
c_cur = h['upsample_initial_channel'] // (2 ** (i + 1))
self.ups.append(weight_norm(
ConvTranspose1d(c_cur * 2, c_cur, k, u, padding=(k - u) // 2)))
if h['use_pitch_embed']:
if i + 1 < len(h['upsample_rates']):
stride_f0 = np.prod(h['upsample_rates'][i + 1:])
self.noise_convs.append(Conv1d(
1, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=stride_f0 // 2))
else:
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = h['upsample_initial_channel'] // (2 ** (i + 1))
for j, (k, d) in enumerate(zip(h['resblock_kernel_sizes'], h['resblock_dilation_sizes'])):
self.resblocks.append(resblock(h, ch, k, d))
self.conv_post = weight_norm(Conv1d(ch, c_out, 7, 1, padding=3))
self.ups.apply(init_weights)
self.conv_post.apply(init_weights)
def forward(self, x, f0=None):
if f0 is not None:
# harmonic-source signal, noise-source signal, uv flag
f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2)
har_source, noi_source, uv = self.m_source(f0)
har_source = har_source.transpose(1, 2)
x = self.conv_pre(x)
for i in range(self.num_upsamples):
x = F.leaky_relu(x, LRELU_SLOPE)
x = self.ups[i](x)
if f0 is not None:
x_source = self.noise_convs[i](har_source)
x = x + x_source
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i * self.num_kernels + j](x)
else:
xs += self.resblocks[i * self.num_kernels + j](x)
x = xs / self.num_kernels
x = F.leaky_relu(x)
x = self.conv_post(x)
x = torch.tanh(x)
return x
def remove_weight_norm(self):
print('Removing weight norm...')
for l in self.ups:
remove_weight_norm(l)
for l in self.resblocks:
l.remove_weight_norm()
remove_weight_norm(self.conv_pre)
remove_weight_norm(self.conv_post)
class DiscriminatorP(torch.nn.Module):
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False, use_cond=False, c_in=1):
super(DiscriminatorP, self).__init__()
self.use_cond = use_cond
if use_cond:
from utils.hparams import hparams
t = hparams['hop_size']
self.cond_net = torch.nn.ConvTranspose1d(80, 1, t * 2, stride=t, padding=t // 2)
c_in = 2
self.period = period
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
self.convs = nn.ModuleList([
norm_f(Conv2d(c_in, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))),
])
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
def forward(self, x, mel):
fmap = []
if self.use_cond:
x_mel = self.cond_net(mel)
x = torch.cat([x_mel, x], 1)
# 1d to 2d
b, c, t = x.shape
if t % self.period != 0: # pad first
n_pad = self.period - (t % self.period)
x = F.pad(x, (0, n_pad), "reflect")
t = t + n_pad
x = x.view(b, c, t // self.period, self.period)
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class MultiPeriodDiscriminator(torch.nn.Module):
def __init__(self, use_cond=False, c_in=1):
super(MultiPeriodDiscriminator, self).__init__()
self.discriminators = nn.ModuleList([
DiscriminatorP(2, use_cond=use_cond, c_in=c_in),
DiscriminatorP(3, use_cond=use_cond, c_in=c_in),
DiscriminatorP(5, use_cond=use_cond, c_in=c_in),
DiscriminatorP(7, use_cond=use_cond, c_in=c_in),
DiscriminatorP(11, use_cond=use_cond, c_in=c_in),
])
def forward(self, y, y_hat, mel=None):
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for i, d in enumerate(self.discriminators):
y_d_r, fmap_r = d(y, mel)
y_d_g, fmap_g = d(y_hat, mel)
y_d_rs.append(y_d_r)
fmap_rs.append(fmap_r)
y_d_gs.append(y_d_g)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
class DiscriminatorS(torch.nn.Module):
def __init__(self, use_spectral_norm=False, use_cond=False, upsample_rates=None, c_in=1):
super(DiscriminatorS, self).__init__()
self.use_cond = use_cond
if use_cond:
t = np.prod(upsample_rates)
self.cond_net = torch.nn.ConvTranspose1d(80, 1, t * 2, stride=t, padding=t // 2)
c_in = 2
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
self.convs = nn.ModuleList([
norm_f(Conv1d(c_in, 128, 15, 1, padding=7)),
norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)),
norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)),
norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)),
norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)),
norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)),
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
])
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
def forward(self, x, mel):
if self.use_cond:
x_mel = self.cond_net(mel)
x = torch.cat([x_mel, x], 1)
fmap = []
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class MultiScaleDiscriminator(torch.nn.Module):
def __init__(self, use_cond=False, c_in=1):
super(MultiScaleDiscriminator, self).__init__()
from utils.hparams import hparams
self.discriminators = nn.ModuleList([
DiscriminatorS(use_spectral_norm=True, use_cond=use_cond,
upsample_rates=[4, 4, hparams['hop_size'] // 16],
c_in=c_in),
DiscriminatorS(use_cond=use_cond,
upsample_rates=[4, 4, hparams['hop_size'] // 32],
c_in=c_in),
DiscriminatorS(use_cond=use_cond,
upsample_rates=[4, 4, hparams['hop_size'] // 64],
c_in=c_in),
])
self.meanpools = nn.ModuleList([
AvgPool1d(4, 2, padding=1),
AvgPool1d(4, 2, padding=1)
])
def forward(self, y, y_hat, mel=None):
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for i, d in enumerate(self.discriminators):
if i != 0:
y = self.meanpools[i - 1](y)
y_hat = self.meanpools[i - 1](y_hat)
y_d_r, fmap_r = d(y, mel)
y_d_g, fmap_g = d(y_hat, mel)
y_d_rs.append(y_d_r)
fmap_rs.append(fmap_r)
y_d_gs.append(y_d_g)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
def feature_loss(fmap_r, fmap_g):
loss = 0
for dr, dg in zip(fmap_r, fmap_g):
for rl, gl in zip(dr, dg):
loss += torch.mean(torch.abs(rl - gl))
return loss * 2
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
r_losses = 0
g_losses = 0
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
r_loss = torch.mean((1 - dr) ** 2)
g_loss = torch.mean(dg ** 2)
r_losses += r_loss
g_losses += g_loss
r_losses = r_losses / len(disc_real_outputs)
g_losses = g_losses / len(disc_real_outputs)
return r_losses, g_losses
def cond_discriminator_loss(outputs):
loss = 0
for dg in outputs:
g_loss = torch.mean(dg ** 2)
loss += g_loss
loss = loss / len(outputs)
return loss
def generator_loss(disc_outputs):
loss = 0
for dg in disc_outputs:
l = torch.mean((1 - dg) ** 2)
loss += l
loss = loss / len(disc_outputs)
return loss
|