Spaces:
Sleeping
Sleeping
Singularity666
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
import shutil
|
4 |
-
from pathlib import Path
|
5 |
from main import fine_tune_model
|
6 |
from diffusers import StableDiffusionPipeline, DDIMScheduler
|
7 |
import torch
|
@@ -9,31 +8,41 @@ import torch
|
|
9 |
MODEL_NAME = "runwayml/stable-diffusion-v1-5"
|
10 |
OUTPUT_DIR = "/home/user/app/stable_diffusion_weights/custom_model"
|
11 |
|
12 |
-
def fine_tune(instance_prompt, image1, image2):
|
13 |
instance_data_dir = "/home/user/app/instance_images"
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
24 |
|
25 |
def generate_images(prompt, num_samples, height, width, num_inference_steps, guidance_scale):
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
).
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
def gradio_app():
|
39 |
with gr.Blocks() as demo:
|
@@ -64,4 +73,4 @@ def gradio_app():
|
|
64 |
demo.launch()
|
65 |
|
66 |
if __name__ == "__main__":
|
67 |
-
gradio_app()
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
import shutil
|
|
|
4 |
from main import fine_tune_model
|
5 |
from diffusers import StableDiffusionPipeline, DDIMScheduler
|
6 |
import torch
|
|
|
8 |
MODEL_NAME = "runwayml/stable-diffusion-v1-5"
|
9 |
OUTPUT_DIR = "/home/user/app/stable_diffusion_weights/custom_model"
|
10 |
|
11 |
+
def fine_tune(instance_prompt, image1, image2=None):
|
12 |
instance_data_dir = "/home/user/app/instance_images"
|
13 |
+
|
14 |
+
try:
|
15 |
+
if os.path.exists(instance_data_dir):
|
16 |
+
shutil.rmtree(instance_data_dir)
|
17 |
+
os.makedirs(instance_data_dir, exist_ok=True)
|
18 |
+
|
19 |
+
image1.save(os.path.join(instance_data_dir, "instance_0.png"))
|
20 |
+
if image2 is not None:
|
21 |
+
image2.save(os.path.join(instance_data_dir, "instance_1.png"))
|
22 |
+
|
23 |
+
fine_tune_model(instance_data_dir, instance_prompt, MODEL_NAME, OUTPUT_DIR)
|
24 |
+
return "Model fine-tuning complete."
|
25 |
+
except Exception as e:
|
26 |
+
return str(e)
|
27 |
|
28 |
def generate_images(prompt, num_samples, height, width, num_inference_steps, guidance_scale):
|
29 |
+
try:
|
30 |
+
if not os.path.exists(OUTPUT_DIR):
|
31 |
+
return "The model path does not exist."
|
32 |
+
|
33 |
+
pipe = StableDiffusionPipeline.from_pretrained(OUTPUT_DIR, safety_checker=None, torch_dtype=torch.float16).to("cuda")
|
34 |
+
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
35 |
+
g_cuda = torch.Generator(device='cuda').manual_seed(1337)
|
36 |
+
|
37 |
+
with torch.autocast("cuda"), torch.inference_mode():
|
38 |
+
images = pipe(
|
39 |
+
prompt, height=height, width=width, num_images_per_prompt=num_samples,
|
40 |
+
num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, generator=g_cuda
|
41 |
+
).images
|
42 |
+
|
43 |
+
return images
|
44 |
+
except Exception as e:
|
45 |
+
return str(e)
|
46 |
|
47 |
def gradio_app():
|
48 |
with gr.Blocks() as demo:
|
|
|
73 |
demo.launch()
|
74 |
|
75 |
if __name__ == "__main__":
|
76 |
+
gradio_app()
|