Spaces:
Runtime error
Runtime error
File size: 5,763 Bytes
edd8d6d f9f1b17 369ad4d f9f1b17 369ad4d edd8d6d 369ad4d edd8d6d 369ad4d edd8d6d 369ad4d edd8d6d 925e018 369ad4d edd8d6d 369ad4d edd8d6d 369ad4d edd8d6d 369ad4d 4fbc488 369ad4d edd8d6d 369ad4d d259aad edd8d6d 369ad4d b0cd6ca 925e018 d259aad 369ad4d d259aad 369ad4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
import torch
from PIL import Image
import streamlit as st
import numpy as np
import pandas as pd
from main import predict_caption, CLIPModel, get_text_embeddings
import openai
import base64
from docx import Document
from docx.enum.text import WD_PARAGRAPH_ALIGNMENT
from io import BytesIO
import re
openai.api_key = "sk-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"
st.markdown(
"""
<style>
body {
background-color: transparent;
}
.container {
display: flex;
justify-content: center;
align-items: center;
background-color: rgba(255, 255, 255, 0.7);
border-radius: 15px;
padding: 20px;
}
.stApp {
background-color: transparent;
}
.stText, .stMarkdown, .stTextInput>label, .stButton>button>span {
color: #1c1c1c !important; /* Set the dark text color for text elements */
}
.stButton>button>span {
color: initial !important; /* Reset the text color for the 'Generate Caption' button */
}
.stMarkdown h1, .stMarkdown h2 {
color: #ff6b81 !important; /* Set the text color of h1 and h2 elements to soft red-pink */
font-weight: bold; /* Set the font weight to bold */
border: 2px solid #ff6b81; /* Add a bold border around the headers */
padding: 10px; /* Add padding to the headers */
border-radius: 5px; /* Add border-radius to the headers */
}
</style>
""",
unsafe_allow_html=True,
)
device = torch.device("cpu")
testing_df = pd.read_csv("testing_df.csv")
model = CLIPModel() # Create an instance of CLIPModel
model.load_state_dict(torch.load("weights.pt", map_location=torch.device('cpu')))
# ...)
text_embeddings = torch.load('saved_text_embeddings.pt', map_location=device)
def download_link(content, filename, link_text):
b64 = base64.b64encode(content).decode()
href = f'<a href="data:application/octet-stream;base64,{b64}" download="{filename}">{link_text}</a>'
return href
def show_predicted_caption(image, top_k=8):
matches = predict_caption(
image, model, text_embeddings, testing_df["caption"]
)[:top_k]
cleaned_matches = [re.sub(r'\s\(ROCO_\d+\)', '', match) for match in matches] # Add this line to clean the matches
return cleaned_matches # Return the cleaned_matches instead of matches
def generate_radiology_report(prompt):
response = openai.Completion.create(
engine="text-davinci-003",
prompt=prompt,
max_tokens=800,
n=1,
stop=None,
temperature=1,
)
report = response.choices[0].text.strip()
# Remove reference string from the report
report = re.sub(r'\(ROCO_\d+\)', '', report).strip()
return report
def save_as_docx(text, filename):
document = Document()
document.add_paragraph(text)
with BytesIO() as output:
document.save(output)
output.seek(0)
return output.getvalue()
st.title("RadiXGPT: An Evolution of machine doctors towards Radiology")
# Collect user's personal information
st.subheader("Personal Information")
first_name = st.text_input("First Name")
last_name = st.text_input("Last Name")
age = st.number_input("Age", min_value=0, max_value=120, value=25, step=1)
gender = st.selectbox("Gender", ["Male", "Female", "Other"])
st.write("Upload Scan to get Radiological Report:")
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
if uploaded_file is not None:
image = Image.open(uploaded_file)
if st.button("Generate Caption"):
with st.spinner("Generating caption..."):
image_np = np.array(image)
caption = show_predicted_caption(image_np)[0]
st.success(f"Caption: {caption}")
# Generate the radiology report
radiology_report = generate_radiology_report(f"Write Complete Radiology Report for this with clinical info, subjective, Assessment, Finding, Impressions, Conclusion and more in proper order : {caption}")
# Add personal information to the radiology report
radiology_report_with_personal_info = f"Patient Name: {first_name} {last_name}\nAge: {age}\nGender: {gender}\n\n{radiology_report}"
st.header("Radiology Report")
st.write(radiology_report_with_personal_info)
st.markdown(download_link(save_as_docx(radiology_report_with_personal_info, "radiology_report.docx"), "radiology_report.docx", "Download Report as DOCX"), unsafe_allow_html=True)
feedback_options = ["Satisfied", "Not Satisfied"]
selected_feedback = st.radio("Please provide feedback on the generated report:", feedback_options)
if selected_feedback == "Not Satisfied":
if st.button("Regenerate Report"):
with st.spinner("Regenerating report..."):
alternative_caption = get_alternative_caption(image_np, model, text_embeddings, testing_df["caption"])
regenerated_radiology_report = generate_radiology_report(f"Write Complete Radiology Report for this with clinical info, subjective, Assessment, Finding, Impressions, Conclusion and more in proper order : {alternative_caption}")
regenerated_radiology_report_with_personal_info = f"Patient Name: {first_name} {last_name}\nAge: {age}\nGender: {gender}\n\n{regenerated_radiology_report}"
st.header("Regenerated Radiology Report")
st.write(regenerated_radiology_report_with_personal_info)
st.markdown(download_link(save_as_docx(regenerated_radiology_report_with_personal_info, "regenerated_radiology_report.docx"), "regenerated_radiology_report.docx", "Download Regenerated Report as DOCX"), unsafe_allow_html=True) |