File size: 5,644 Bytes
f9f1b17
 
 
 
 
 
b5ebf36
 
 
ec9f2f1
36b2997
 
473583b
5db06e5
 
 
7107aca
f9f1b17
 
 
295c6f3
 
 
b5ebf36
 
 
 
295c6f3
b5ebf36
 
 
c65c39d
 
 
 
 
 
 
 
 
 
21fd28f
 
 
 
 
5a78ee4
f9f1b17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5ebf36
 
 
 
 
 
 
ec9f2f1
b5ebf36
 
 
 
 
 
 
 
 
 
 
 
 
 
ad61148
 
 
 
 
 
 
b5ebf36
ad61148
 
 
 
b5ebf36
295c6f3
f9f1b17
baed763
 
 
 
 
 
 
 
f9f1b17
 
 
 
 
 
36b2997
 
f9f1b17
 
baed763
f9f1b17
 
baed763
ad61148
baed763
 
 
 
ad61148
36b2997
 
baed763
 
 
36b2997
 
 
473583b
36b2997
295c6f3
 
 
 
 
 
 
bb947d6
baed763
295c6f3
 
 
 
 
bb947d6
295c6f3
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import streamlit as st
import pickle
import pandas as pd
import torch
from PIL import Image
import numpy as np
from main import predict_caption, CLIPModel, get_text_embeddings
import openai
import base64
from docx import Document
from docx.enum.text import WD_PARAGRAPH_ALIGNMENT
from io import BytesIO

# Set up OpenAI API
openai.api_key = "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"

# Custom CSS for the page
st.markdown(
    """
<style>
    body {
        background-color: transparent;
    }
    .container {
        display: flex;
        justify-content: center;
        align-items: center;
        background-color: rgba(255, 255, 255, 0.7);
        border-radius: 15px;
        padding: 20px;
    }
    .stApp {
        background-color: transparent;
    }
    .stText, .stMarkdown, .stTextInput>label, .stButton>button>span {
        color: #1c1c1c !important; /* Set the dark text color for text elements */
    }
    .stButton>button>span {
        color: initial !important; /* Reset the text color for the 'Generate Caption' button */
    }
    .stMarkdown h1, .stMarkdown h2 {
        color: #ff6b81 !important; /* Set the text color of h1 and h2 elements to soft red-pink */
        font-weight: bold; /* Set the font weight to bold */
        border: 2px solid #ff6b81; /* Add a bold border around the headers */
        padding: 10px; /* Add padding to the headers */
        border-radius: 5px; /* Add border-radius to the headers */
    }
</style>
""",
    unsafe_allow_html=True,
)

device = torch.device("cpu")

testing_df = pd.read_csv("testing_df.csv")
model = CLIPModel().to(device)
model.load_state_dict(torch.load("weights.pt", map_location=torch.device('cpu')))
text_embeddings = torch.load('saved_text_embeddings.pt', map_location=device)

def show_predicted_caption(image):
    matches = predict_caption(
        image, model, text_embeddings, testing_df["caption"]
    )[0]
    return matches

def generate_radiology_report(prompt):
    response = openai.Completion.create(
        engine="text-davinci-003",
        prompt=prompt,
        max_tokens=800,
        n=1,
        stop=None,
        temperature=1,
    )
    return response.choices[0].text.strip()

def chatbot_response(prompt):
    response = openai.Completion.create(
        engine="text-davinci-003",
        prompt=prompt,
        max_tokens=500,
        n=1,
        stop=None,
        temperature=0.8,
    )
    return response.choices[0].text.strip()

def save_as_docx(text, filename):
    document = Document()
    document.add_paragraph(text)
    with BytesIO() as output:
        document.save(output)
        output.seek(0)
        return output.getvalue()

def download_link(content, filename, link_text):
    b64 = base64.b64encode(content).decode()
    href = f'<a href="data:application/octet-stream;base64,{b64}" download="{filename}">{link_text}</a>'
    return href

st.title("RadiXGPT: An Evolution of machine doctors towards Radiology")

# Collect user's personal information
st.subheader("Personal Information")
first_name = st.text_input("First Name")
last_name = st.text_input("Last Name")
age = st.number_input("Age", min_value=0, max_value=120, value=25, step=1)
gender = st.selectbox("Gender", ["Male", "Female", "Other"])

st.write("Upload Scan to get Radiological Report:")
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
if uploaded_file is not None:
    image = Image.open(uploaded_file)
    st.image(image, caption="Uploaded Image", use_column_width=True)
    st.write("")

    if st.button("Generate Caption"):
        with st.spinner("Generating caption..."):
            image_np = np.array(image)
            caption = show_predicted_caption(image_np)

            st.success(f"Caption: {caption}")

            # Generate the radiology report
            radiology_report = generate_radiology_report(f"Write Complete Radiology Report for this: {caption}")
            
            # Add personal information to the radiology report
            radiology_report_with_personal_info = f"Patient Name: {first_name} {last_name}\nAge: {age}\nGender: {gender}\n\n{radiology_report}"
            
            container = st.container()
            with container:
                st.header("Radiology Report")
                st.write(radiology_report_with_personal_info)
                st.markdown(download_link(save_as_docx(radiology_report_with_personal_info, "radiology_report.docx"), "radiology_report.docx", "Download Report as DOCX"), unsafe_allow_html=True)

            # Add the chatbot functionality
            st.header("1-to-1 Consultation")
            st.write("Ask any questions you have about the radiology report:")

            user_input = st.text_input("Enter your question:")
            chat_history = []

            if user_input:
                chat_history.append({"user": user_input})

                if user_input.lower() == "thank you":
                    st.write("Bot: You're welcome! If you have any more questions, feel free to ask.")
                else:
                    # Generate the answer to the user's question
                    prompt = f"Answer to the user's question based on the generated radiology report: {user_input}"
                    for history_item in chat_history:
                        prompt += f"\nUser: {history_item['user']}"
                        if 'bot' in history_item:
                            prompt += f"\nBot: {history_item['bot']}"

                    answer = chatbot_response(prompt)
                    chat_history[-1]["bot"] = answer
                    st.write(f"Bot: {answer}")