Spaces:
Runtime error
Runtime error
File size: 5,644 Bytes
f9f1b17 b5ebf36 ec9f2f1 36b2997 473583b 5db06e5 7107aca f9f1b17 295c6f3 b5ebf36 295c6f3 b5ebf36 c65c39d 21fd28f 5a78ee4 f9f1b17 b5ebf36 ec9f2f1 b5ebf36 ad61148 b5ebf36 ad61148 b5ebf36 295c6f3 f9f1b17 baed763 f9f1b17 36b2997 f9f1b17 baed763 f9f1b17 baed763 ad61148 baed763 ad61148 36b2997 baed763 36b2997 473583b 36b2997 295c6f3 bb947d6 baed763 295c6f3 bb947d6 295c6f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import streamlit as st
import pickle
import pandas as pd
import torch
from PIL import Image
import numpy as np
from main import predict_caption, CLIPModel, get_text_embeddings
import openai
import base64
from docx import Document
from docx.enum.text import WD_PARAGRAPH_ALIGNMENT
from io import BytesIO
# Set up OpenAI API
openai.api_key = "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"
# Custom CSS for the page
st.markdown(
"""
<style>
body {
background-color: transparent;
}
.container {
display: flex;
justify-content: center;
align-items: center;
background-color: rgba(255, 255, 255, 0.7);
border-radius: 15px;
padding: 20px;
}
.stApp {
background-color: transparent;
}
.stText, .stMarkdown, .stTextInput>label, .stButton>button>span {
color: #1c1c1c !important; /* Set the dark text color for text elements */
}
.stButton>button>span {
color: initial !important; /* Reset the text color for the 'Generate Caption' button */
}
.stMarkdown h1, .stMarkdown h2 {
color: #ff6b81 !important; /* Set the text color of h1 and h2 elements to soft red-pink */
font-weight: bold; /* Set the font weight to bold */
border: 2px solid #ff6b81; /* Add a bold border around the headers */
padding: 10px; /* Add padding to the headers */
border-radius: 5px; /* Add border-radius to the headers */
}
</style>
""",
unsafe_allow_html=True,
)
device = torch.device("cpu")
testing_df = pd.read_csv("testing_df.csv")
model = CLIPModel().to(device)
model.load_state_dict(torch.load("weights.pt", map_location=torch.device('cpu')))
text_embeddings = torch.load('saved_text_embeddings.pt', map_location=device)
def show_predicted_caption(image):
matches = predict_caption(
image, model, text_embeddings, testing_df["caption"]
)[0]
return matches
def generate_radiology_report(prompt):
response = openai.Completion.create(
engine="text-davinci-003",
prompt=prompt,
max_tokens=800,
n=1,
stop=None,
temperature=1,
)
return response.choices[0].text.strip()
def chatbot_response(prompt):
response = openai.Completion.create(
engine="text-davinci-003",
prompt=prompt,
max_tokens=500,
n=1,
stop=None,
temperature=0.8,
)
return response.choices[0].text.strip()
def save_as_docx(text, filename):
document = Document()
document.add_paragraph(text)
with BytesIO() as output:
document.save(output)
output.seek(0)
return output.getvalue()
def download_link(content, filename, link_text):
b64 = base64.b64encode(content).decode()
href = f'<a href="data:application/octet-stream;base64,{b64}" download="{filename}">{link_text}</a>'
return href
st.title("RadiXGPT: An Evolution of machine doctors towards Radiology")
# Collect user's personal information
st.subheader("Personal Information")
first_name = st.text_input("First Name")
last_name = st.text_input("Last Name")
age = st.number_input("Age", min_value=0, max_value=120, value=25, step=1)
gender = st.selectbox("Gender", ["Male", "Female", "Other"])
st.write("Upload Scan to get Radiological Report:")
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
if uploaded_file is not None:
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
st.write("")
if st.button("Generate Caption"):
with st.spinner("Generating caption..."):
image_np = np.array(image)
caption = show_predicted_caption(image_np)
st.success(f"Caption: {caption}")
# Generate the radiology report
radiology_report = generate_radiology_report(f"Write Complete Radiology Report for this: {caption}")
# Add personal information to the radiology report
radiology_report_with_personal_info = f"Patient Name: {first_name} {last_name}\nAge: {age}\nGender: {gender}\n\n{radiology_report}"
container = st.container()
with container:
st.header("Radiology Report")
st.write(radiology_report_with_personal_info)
st.markdown(download_link(save_as_docx(radiology_report_with_personal_info, "radiology_report.docx"), "radiology_report.docx", "Download Report as DOCX"), unsafe_allow_html=True)
# Add the chatbot functionality
st.header("1-to-1 Consultation")
st.write("Ask any questions you have about the radiology report:")
user_input = st.text_input("Enter your question:")
chat_history = []
if user_input:
chat_history.append({"user": user_input})
if user_input.lower() == "thank you":
st.write("Bot: You're welcome! If you have any more questions, feel free to ask.")
else:
# Generate the answer to the user's question
prompt = f"Answer to the user's question based on the generated radiology report: {user_input}"
for history_item in chat_history:
prompt += f"\nUser: {history_item['user']}"
if 'bot' in history_item:
prompt += f"\nBot: {history_item['bot']}"
answer = chatbot_response(prompt)
chat_history[-1]["bot"] = answer
st.write(f"Bot: {answer}")
|