File size: 6,062 Bytes
edd8d6d
f9f1b17
369ad4d
f9f1b17
369ad4d
 
 
 
 
 
 
 
edd8d6d
369ad4d
edd8d6d
 
 
369ad4d
edd8d6d
 
 
369ad4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edd8d6d
 
 
925e018
369ad4d
edd8d6d
 
 
369ad4d
1c4591c
 
 
 
 
 
 
 
 
 
 
edd8d6d
 
369ad4d
 
 
 
4fbc488
369ad4d
edd8d6d
 
369ad4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d259aad
edd8d6d
369ad4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0cd6ca
 
 
925e018
 
d259aad
369ad4d
 
d259aad
 
369ad4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import torch
from PIL import Image
import streamlit as st
import numpy as np
import pandas as pd
from main import predict_caption, CLIPModel, get_text_embeddings
import openai
import base64
from docx import Document
from docx.enum.text import WD_PARAGRAPH_ALIGNMENT
from io import BytesIO
import re

openai.api_key = "sk-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"

st.markdown(
    """
    <style>
    body {
        background-color: transparent;
    }
    .container {
        display: flex;
        justify-content: center;
        align-items: center;
        background-color: rgba(255, 255, 255, 0.7);
        border-radius: 15px;
        padding: 20px;
    }
    .stApp {
        background-color: transparent;
    }
    .stText, .stMarkdown, .stTextInput>label, .stButton>button>span {
        color: #1c1c1c !important; /* Set the dark text color for text elements */
    }
    .stButton>button>span {
        color: initial !important; /* Reset the text color for the 'Generate Caption' button */
    }
    .stMarkdown h1, .stMarkdown h2 {
        color: #ff6b81 !important; /* Set the text color of h1 and h2 elements to soft red-pink */
        font-weight: bold; /* Set the font weight to bold */
        border: 2px solid #ff6b81; /* Add a bold border around the headers */
        padding: 10px; /* Add padding to the headers */
        border-radius: 5px; /* Add border-radius to the headers */
    }
    </style>
    """,
    unsafe_allow_html=True,
)



device = torch.device("cpu")

testing_df = pd.read_csv("testing_df.csv")
model = CLIPModel()  # Create an instance of CLIPModel
# Load the model
state_dict = torch.load("weights.pt", map_location=torch.device('cpu'))
print("Loaded State Dict Keys:", state_dict.keys())

# Create an instance of CLIPModel
model = CLIPModel().to(device)
print("Model Keys:", model.state_dict().keys())

# Load the state_dict into the model
model.load_state_dict(state_dict, strict=False)  # Set strict=False to ignore unexpected keys

text_embeddings = torch.load('saved_text_embeddings.pt', map_location=device)

def download_link(content, filename, link_text):
    b64 = base64.b64encode(content).decode()
    href = f'<a href="data:application/octet-stream;base64,{b64}" download="{filename}">{link_text}</a>'
    return href

def show_predicted_caption(image, top_k=8):
    matches = predict_caption(
        image, model, text_embeddings, testing_df["caption"]
    )[:top_k]
    cleaned_matches = [re.sub(r'\s\(ROCO_\d+\)', '', match) for match in matches]  # Add this line to clean the matches
    return cleaned_matches  # Return the cleaned_matches instead of matches

def generate_radiology_report(prompt):
    response = openai.Completion.create(
        engine="text-davinci-003",
        prompt=prompt,
        max_tokens=800,
        n=1,
        stop=None,
        temperature=1,
    )
    report = response.choices[0].text.strip()
    # Remove reference string from the report
    report = re.sub(r'\(ROCO_\d+\)', '', report).strip()
    return report


def save_as_docx(text, filename):
    document = Document()
    document.add_paragraph(text)
    with BytesIO() as output:
        document.save(output)
        output.seek(0)
        return output.getvalue()

st.title("RadiXGPT: An Evolution of machine doctors towards Radiology")


# Collect user's personal information
st.subheader("Personal Information")
first_name = st.text_input("First Name")
last_name = st.text_input("Last Name")
age = st.number_input("Age", min_value=0, max_value=120, value=25, step=1)
gender = st.selectbox("Gender", ["Male", "Female", "Other"])

st.write("Upload Scan to get Radiological Report:")
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
if uploaded_file is not None:
    image = Image.open(uploaded_file)
    if st.button("Generate Caption"):
        with st.spinner("Generating caption..."):
            image_np = np.array(image)
            caption = show_predicted_caption(image_np)[0]

            st.success(f"Caption: {caption}")

            # Generate the radiology report
            radiology_report = generate_radiology_report(f"Write Complete Radiology Report for this with clinical info, subjective, Assessment, Finding, Impressions, Conclusion and more in proper order : {caption}")

            # Add personal information to the radiology report
            radiology_report_with_personal_info = f"Patient Name: {first_name} {last_name}\nAge: {age}\nGender: {gender}\n\n{radiology_report}"

            st.header("Radiology Report")
            st.write(radiology_report_with_personal_info)
            st.markdown(download_link(save_as_docx(radiology_report_with_personal_info, "radiology_report.docx"), "radiology_report.docx", "Download Report as DOCX"), unsafe_allow_html=True)

        feedback_options = ["Satisfied", "Not Satisfied"]
        selected_feedback = st.radio("Please provide feedback on the generated report:", feedback_options)

        if selected_feedback == "Not Satisfied":
            if st.button("Regenerate Report"):
                with st.spinner("Regenerating report..."):
                    alternative_caption = get_alternative_caption(image_np, model, text_embeddings, testing_df["caption"])
                    regenerated_radiology_report = generate_radiology_report(f"Write Complete Radiology Report for this with clinical info, subjective, Assessment, Finding, Impressions, Conclusion and more in proper order : {alternative_caption}")

                    regenerated_radiology_report_with_personal_info = f"Patient Name: {first_name} {last_name}\nAge: {age}\nGender: {gender}\n\n{regenerated_radiology_report}"

                    st.header("Regenerated Radiology Report")
                    st.write(regenerated_radiology_report_with_personal_info)
                    st.markdown(download_link(save_as_docx(regenerated_radiology_report_with_personal_info, "regenerated_radiology_report.docx"), "regenerated_radiology_report.docx", "Download Regenerated Report as DOCX"), unsafe_allow_html=True)