pdf_buddy / app.py
SinhNguyen's picture
set langchain verbose to False
734f1f6
raw
history blame
3.83 kB
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.vectorstores import FAISS
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.llms import HuggingFaceHub
import langchain
langchain.verbose = False
from htmlTemplates import css, bot_template, user_template
from dotenv import load_dotenv
# Set the Streamlit page configuration and CSS styles
st.set_page_config(page_title="PDF Buddy", page_icon=":coffee:")
st.markdown(
"""
<style>
body {
background-color: #fce6ef;
}
</style>
""",
unsafe_allow_html=True
)
st.write(css, unsafe_allow_html=True)
st.header("PDF Buddy :coffee:")
def get_pdf_text(pdf_docs):
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
def get_text_chunks(text):
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_text(text)
return chunks
@st.cache_resource
def load_embeddings():
model_name = "hkunlp/instructor-xl"
model_kwargs = {'device': 'cpu'}
embeddings = HuggingFaceInstructEmbeddings(
model_name=model_name, model_kwargs=model_kwargs)
return embeddings
embeddings = load_embeddings()
def get_vectorstore(text_chunks):
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
return vectorstore
@st.cache_resource
def load_llm():
llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":218})
return llm
# Load the model and store it as a global variable
llm = load_llm()
def get_conversation_chain(vectorstore):
memory = ConversationBufferMemory(
memory_key='chat_history', return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vectorstore.as_retriever(),
memory=memory
)
return conversation_chain
def handle_userinput(user_question):
response = st.session_state.conversation({'question': user_question})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write(user_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
else:
st.write(bot_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
def main():
load_dotenv()
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
user_question = st.text_input("Ask a question about your documents:")
if user_question:
handle_userinput(user_question)
with st.sidebar:
st.subheader("Your documents")
pdf_docs = st.file_uploader(
"Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
if st.button("Process"):
with st.spinner("Processing"):
# get pdf text
raw_text = get_pdf_text(pdf_docs)
# get the text chunks
text_chunks = get_text_chunks(raw_text)
# create vector store
vectorstore = get_vectorstore(text_chunks)
# create conversation chain
st.session_state.conversation = get_conversation_chain(
vectorstore)
if __name__ == '__main__':
main()