Spaces:
Running
Running
import streamlit as st | |
from PyPDF2 import PdfReader | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.embeddings import HuggingFaceInstructEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.memory import ConversationBufferMemory | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.llms import HuggingFaceHub | |
import langchain | |
langchain.verbose = False | |
from htmlTemplates import css, bot_template, user_template | |
from dotenv import load_dotenv | |
# Set the Streamlit page configuration and CSS styles | |
st.set_page_config(page_title="PDF Buddy", page_icon=":coffee:") | |
st.markdown( | |
""" | |
<style> | |
body { | |
background-color: #fce6ef; | |
} | |
</style> | |
""", | |
unsafe_allow_html=True | |
) | |
st.write(css, unsafe_allow_html=True) | |
st.header("PDF Buddy :coffee:") | |
def get_pdf_text(pdf_docs): | |
text = "" | |
for pdf in pdf_docs: | |
pdf_reader = PdfReader(pdf) | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
return text | |
def get_text_chunks(text): | |
text_splitter = CharacterTextSplitter( | |
separator="\n", | |
chunk_size=1000, | |
chunk_overlap=200, | |
length_function=len | |
) | |
chunks = text_splitter.split_text(text) | |
return chunks | |
def load_embeddings(): | |
model_name = "hkunlp/instructor-xl" | |
model_kwargs = {'device': 'cpu'} | |
embeddings = HuggingFaceInstructEmbeddings( | |
model_name=model_name, model_kwargs=model_kwargs) | |
return embeddings | |
embeddings = load_embeddings() | |
def get_vectorstore(text_chunks): | |
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) | |
return vectorstore | |
def load_llm(): | |
llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":218}) | |
return llm | |
# Load the model and store it as a global variable | |
llm = load_llm() | |
def get_conversation_chain(vectorstore): | |
memory = ConversationBufferMemory( | |
memory_key='chat_history', return_messages=True) | |
conversation_chain = ConversationalRetrievalChain.from_llm( | |
llm=llm, | |
retriever=vectorstore.as_retriever(), | |
memory=memory | |
) | |
return conversation_chain | |
def handle_userinput(user_question): | |
response = st.session_state.conversation({'question': user_question}) | |
st.session_state.chat_history = response['chat_history'] | |
for i, message in enumerate(st.session_state.chat_history): | |
if i % 2 == 0: | |
st.write(user_template.replace( | |
"{{MSG}}", message.content), unsafe_allow_html=True) | |
else: | |
st.write(bot_template.replace( | |
"{{MSG}}", message.content), unsafe_allow_html=True) | |
def main(): | |
load_dotenv() | |
if "conversation" not in st.session_state: | |
st.session_state.conversation = None | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = None | |
user_question = st.text_input("Ask a question about your documents:") | |
if user_question: | |
handle_userinput(user_question) | |
with st.sidebar: | |
st.subheader("Your documents") | |
pdf_docs = st.file_uploader( | |
"Upload your PDFs here and click on 'Process'", accept_multiple_files=True) | |
if st.button("Process"): | |
with st.spinner("Processing"): | |
# get pdf text | |
raw_text = get_pdf_text(pdf_docs) | |
# get the text chunks | |
text_chunks = get_text_chunks(raw_text) | |
# create vector store | |
vectorstore = get_vectorstore(text_chunks) | |
# create conversation chain | |
st.session_state.conversation = get_conversation_chain( | |
vectorstore) | |
if __name__ == '__main__': | |
main() |