Spaces:
Running
Running
SinhNguyen
commited on
Commit
•
6f7a50b
1
Parent(s):
80ef0ef
initiate the space
Browse files- .gitignore +42 -0
- README.md +13 -12
- app.py +120 -0
- htmlTemplates.py +57 -0
- requirements.txt +15 -0
.gitignore
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
dist/
|
11 |
+
build/
|
12 |
+
*.egg-info/
|
13 |
+
*.egg
|
14 |
+
|
15 |
+
# Virtual environments
|
16 |
+
venv/
|
17 |
+
env/
|
18 |
+
.env
|
19 |
+
|
20 |
+
# IDE specific files
|
21 |
+
.idea/
|
22 |
+
.vscode/
|
23 |
+
|
24 |
+
# Jupyter Notebook specific files
|
25 |
+
.ipynb_checkpoints/
|
26 |
+
|
27 |
+
# Compiled Python files
|
28 |
+
*.pyc
|
29 |
+
|
30 |
+
# Logs and temporary files
|
31 |
+
*.log
|
32 |
+
*.bak
|
33 |
+
*.swp
|
34 |
+
*.tmp
|
35 |
+
|
36 |
+
# Coverage reports
|
37 |
+
htmlcov/
|
38 |
+
.coverage
|
39 |
+
|
40 |
+
# Dependency directories
|
41 |
+
lib/
|
42 |
+
lib64/
|
README.md
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
1 |
+
# Langchain Demo - PDF Text Chatbot
|
2 |
+
|
3 |
+
This repository contains a pet demo showcasing the use of Langchain, Hugging Face's Embedding & LLM, to build a chatbot for PDF documents. It is customized from [original repository](https://github.com/alejandro-ao/ask-multiple-pdfs). The chatbot is deployed as a Streamlit web application on Hugging Face Spaces using GitHub Actions.
|
4 |
+
|
5 |
+
## Overview
|
6 |
+
|
7 |
+
The Langchain Demo allows you to extract text content from PDF documents and interact with them using a chatbot interface. The main steps involved in the process are as follows:
|
8 |
+
|
9 |
+
1. **Extract PDF Text Content**: The demo extracts the text content from PDF documents.
|
10 |
+
|
11 |
+
2. **Text Chunking and Embedding**: The extracted text is broken down into smaller chunks and processed using a powerful Hugging Face instruction-finetuned text embedding model and saved in a vector database.
|
12 |
+
|
13 |
+
3. **Response Generation**: The selected chunks are then passed to a language model provided by Hugging Face. Conversational retrieval by leveraging the LLM for generating responses, the vector store for efficient similarity-based retrieval, and the conversation buffer memory to maintain the context of the conversation history.
|
app.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PyPDF2 import PdfReader
|
3 |
+
from langchain.text_splitter import CharacterTextSplitter
|
4 |
+
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
|
5 |
+
from langchain.vectorstores import FAISS
|
6 |
+
from langchain.chat_models import ChatOpenAI
|
7 |
+
from langchain.memory import ConversationBufferMemory
|
8 |
+
from langchain.chains import ConversationalRetrievalChain
|
9 |
+
from htmlTemplates import css, bot_template, user_template
|
10 |
+
from langchain.llms import HuggingFaceHub
|
11 |
+
import os
|
12 |
+
from dotenv import load_dotenv
|
13 |
+
|
14 |
+
|
15 |
+
def get_pdf_text(pdf_docs):
|
16 |
+
text = ""
|
17 |
+
for pdf in pdf_docs:
|
18 |
+
pdf_reader = PdfReader(pdf)
|
19 |
+
for page in pdf_reader.pages:
|
20 |
+
text += page.extract_text()
|
21 |
+
return text
|
22 |
+
|
23 |
+
|
24 |
+
def get_text_chunks(text):
|
25 |
+
text_splitter = CharacterTextSplitter(
|
26 |
+
separator="\n",
|
27 |
+
chunk_size=1000,
|
28 |
+
chunk_overlap=200,
|
29 |
+
length_function=len
|
30 |
+
)
|
31 |
+
chunks = text_splitter.split_text(text)
|
32 |
+
return chunks
|
33 |
+
|
34 |
+
|
35 |
+
def get_vectorstore(text_chunks):
|
36 |
+
# embeddings = OpenAIEmbeddings()
|
37 |
+
print("HAHA")
|
38 |
+
model_name = "hkunlp/instructor-xl"
|
39 |
+
model_kwargs = {'device': 'cpu'}
|
40 |
+
embeddings = HuggingFaceInstructEmbeddings(
|
41 |
+
model_name=model_name, model_kwargs=model_kwargs)
|
42 |
+
print("HAHA")
|
43 |
+
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
44 |
+
return vectorstore
|
45 |
+
|
46 |
+
|
47 |
+
def get_conversation_chain(vectorstore):
|
48 |
+
# llm = ChatOpenAI()
|
49 |
+
llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":218})
|
50 |
+
|
51 |
+
memory = ConversationBufferMemory(
|
52 |
+
memory_key='chat_history', return_messages=True)
|
53 |
+
conversation_chain = ConversationalRetrievalChain.from_llm(
|
54 |
+
llm=llm,
|
55 |
+
retriever=vectorstore.as_retriever(),
|
56 |
+
memory=memory
|
57 |
+
)
|
58 |
+
return conversation_chain
|
59 |
+
|
60 |
+
|
61 |
+
def handle_userinput(user_question):
|
62 |
+
response = st.session_state.conversation({'question': user_question})
|
63 |
+
st.session_state.chat_history = response['chat_history']
|
64 |
+
|
65 |
+
for i, message in enumerate(st.session_state.chat_history):
|
66 |
+
if i % 2 == 0:
|
67 |
+
st.write(user_template.replace(
|
68 |
+
"{{MSG}}", message.content), unsafe_allow_html=True)
|
69 |
+
else:
|
70 |
+
st.write(bot_template.replace(
|
71 |
+
"{{MSG}}", message.content), unsafe_allow_html=True)
|
72 |
+
|
73 |
+
|
74 |
+
def main():
|
75 |
+
load_dotenv()
|
76 |
+
st.set_page_config(page_title="PDF Buddy", page_icon=":coffee:")
|
77 |
+
st.markdown(
|
78 |
+
"""
|
79 |
+
<style>
|
80 |
+
body {
|
81 |
+
background-color: #fce6ef;
|
82 |
+
}
|
83 |
+
</style>
|
84 |
+
""",
|
85 |
+
unsafe_allow_html=True
|
86 |
+
)
|
87 |
+
st.write(css, unsafe_allow_html=True)
|
88 |
+
|
89 |
+
if "conversation" not in st.session_state:
|
90 |
+
st.session_state.conversation = None
|
91 |
+
if "chat_history" not in st.session_state:
|
92 |
+
st.session_state.chat_history = None
|
93 |
+
|
94 |
+
st.header("PDF Buddy :coffee:")
|
95 |
+
user_question = st.text_input("Ask a question about your documents:")
|
96 |
+
if user_question:
|
97 |
+
handle_userinput(user_question)
|
98 |
+
|
99 |
+
with st.sidebar:
|
100 |
+
st.subheader("Your documents")
|
101 |
+
pdf_docs = st.file_uploader(
|
102 |
+
"Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
|
103 |
+
if st.button("Process"):
|
104 |
+
with st.spinner("Processing"):
|
105 |
+
# get pdf text
|
106 |
+
raw_text = get_pdf_text(pdf_docs)
|
107 |
+
|
108 |
+
# get the text chunks
|
109 |
+
text_chunks = get_text_chunks(raw_text)
|
110 |
+
|
111 |
+
# create vector store
|
112 |
+
vectorstore = get_vectorstore(text_chunks)
|
113 |
+
|
114 |
+
# create conversation chain
|
115 |
+
st.session_state.conversation = get_conversation_chain(
|
116 |
+
vectorstore)
|
117 |
+
|
118 |
+
|
119 |
+
if __name__ == '__main__':
|
120 |
+
main()
|
htmlTemplates.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
css = '''
|
2 |
+
<style>
|
3 |
+
body {
|
4 |
+
background-color: #fce6ef;
|
5 |
+
}
|
6 |
+
|
7 |
+
.chat-message {
|
8 |
+
padding: 1.5rem;
|
9 |
+
border-radius: 0.5rem;
|
10 |
+
margin-bottom: 1rem;
|
11 |
+
display: flex;
|
12 |
+
}
|
13 |
+
|
14 |
+
.chat-message.user {
|
15 |
+
background-color: #fdeff2;
|
16 |
+
}
|
17 |
+
|
18 |
+
.chat-message.bot {
|
19 |
+
background-color: #fba5c0;
|
20 |
+
}
|
21 |
+
|
22 |
+
.chat-message .avatar {
|
23 |
+
width: 20%;
|
24 |
+
}
|
25 |
+
|
26 |
+
.chat-message .avatar img {
|
27 |
+
max-width: 78px;
|
28 |
+
max-height: 78px;
|
29 |
+
border-radius: 50%;
|
30 |
+
object-fit: cover;
|
31 |
+
}
|
32 |
+
|
33 |
+
.chat-message .message {
|
34 |
+
width: 80%;
|
35 |
+
padding: 0 1.5rem;
|
36 |
+
color: #fff;
|
37 |
+
}
|
38 |
+
</style>
|
39 |
+
'''
|
40 |
+
|
41 |
+
bot_template = '''
|
42 |
+
<div class="chat-message bot">
|
43 |
+
<div class="avatar">
|
44 |
+
<img src="https://i.ibb.co/cN0nmSj/Screenshot-2023-05-28-at-02-37-21.png" style="max-height: 78px; max-width: 78px; border-radius: 50%; object-fit: cover;">
|
45 |
+
</div>
|
46 |
+
<div class="message">{{MSG}}</div>
|
47 |
+
</div>
|
48 |
+
'''
|
49 |
+
|
50 |
+
user_template = '''
|
51 |
+
<div class="chat-message user">
|
52 |
+
<div class="avatar">
|
53 |
+
<img src="https://i.ibb.co/rdZC7LZ/Photo-logo-1.png">
|
54 |
+
</div>
|
55 |
+
<div class="message">{{MSG}}</div>
|
56 |
+
</div>
|
57 |
+
'''
|
requirements.txt
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain
|
2 |
+
PyPDF2
|
3 |
+
python-dotenv
|
4 |
+
streamlit
|
5 |
+
openai
|
6 |
+
faiss-cpu
|
7 |
+
altair
|
8 |
+
tiktoken
|
9 |
+
|
10 |
+
# use huggingface llms
|
11 |
+
huggingface-hub
|
12 |
+
|
13 |
+
# Use instructor embeddings
|
14 |
+
InstructorEmbedding
|
15 |
+
sentence-transformers
|