Spaces:
Sleeping
Sleeping
change method to import from folder
Browse files
app.py
CHANGED
@@ -202,26 +202,27 @@ def load_embeddings():
|
|
202 |
return embeddings
|
203 |
|
204 |
def main():
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
|
|
209 |
|
210 |
# DB_FAISS_UPLOAD_PATH = "vectorstores/db_faiss"
|
211 |
st.header("DOCUMENT QUESTION ANSWERING IS2")
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
|
216 |
-
#
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
|
226 |
llm = load_llama2_llamaCpp()
|
227 |
qa_prompt = set_custom_prompt()
|
@@ -229,38 +230,31 @@ def main():
|
|
229 |
#memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
230 |
#doc_chain = load_qa_chain(llm, chain_type="stuff", prompt = qa_prompt)
|
231 |
#question_generator = LLMChain(llm=llm, prompt=CONDENSE_QUESTION_PROMPT)
|
232 |
-
embeddings = load_embeddings()
|
233 |
|
234 |
|
235 |
-
uploaded_file = st.file_uploader('Choose your .pdf file', type="pdf")
|
236 |
-
print(uploaded_file)
|
237 |
-
if uploaded_file is not None:
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
|
257 |
-
query = st.text_input("ASK ABOUT THE DOCS:")
|
258 |
-
if query:
|
259 |
-
start = time.time()
|
260 |
-
response = qa_chain({'query': query})
|
261 |
-
st.write(response["result"])
|
262 |
-
end = time.time()
|
263 |
-
st.write("Respone time:",int(end-start),"sec")
|
264 |
|
265 |
# qa_chain = ConversationalRetrievalChain(
|
266 |
# retriever =db.as_retriever(search_kwargs={'k':2}),
|
@@ -272,44 +266,44 @@ def main():
|
|
272 |
# #get_chat_history=lambda h :h
|
273 |
# )
|
274 |
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
|
279 |
-
#
|
280 |
-
|
281 |
-
#
|
282 |
-
|
283 |
-
|
284 |
-
#
|
285 |
-
|
286 |
|
287 |
-
|
288 |
|
289 |
-
|
290 |
|
291 |
-
#
|
292 |
-
#
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
#
|
302 |
-
|
303 |
|
304 |
-
#
|
305 |
-
#
|
306 |
-
#
|
307 |
-
#
|
308 |
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
|
314 |
|
315 |
if __name__ == '__main__':
|
|
|
202 |
return embeddings
|
203 |
|
204 |
def main():
|
205 |
+
data = []
|
206 |
+
msgs = StreamlitChatMessageHistory(key="langchain_messages")
|
207 |
+
print(msgs)
|
208 |
+
if "messages" not in st.session_state:
|
209 |
+
st.session_state.messages = []
|
210 |
|
211 |
# DB_FAISS_UPLOAD_PATH = "vectorstores/db_faiss"
|
212 |
st.header("DOCUMENT QUESTION ANSWERING IS2")
|
213 |
+
directory = "data"
|
214 |
+
data_dir = UploadDoc(directory).create_document()
|
215 |
+
data.extend(data_dir)
|
216 |
|
217 |
+
#create vector from upload
|
218 |
+
if len(data) > 0 :
|
219 |
+
sp_docs = split_docs(documents = data)
|
220 |
+
st.write(f"This document have {len(sp_docs)} chunks")
|
221 |
+
embeddings = load_embeddings()
|
222 |
+
with st.spinner('Wait for create vector'):
|
223 |
+
db = FAISS.from_documents(sp_docs, embeddings)
|
224 |
+
# db.save_local(DB_FAISS_UPLOAD_PATH)
|
225 |
+
# st.write(f"Your model is already store in {DB_FAISS_UPLOAD_PATH}")
|
226 |
|
227 |
llm = load_llama2_llamaCpp()
|
228 |
qa_prompt = set_custom_prompt()
|
|
|
230 |
#memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
231 |
#doc_chain = load_qa_chain(llm, chain_type="stuff", prompt = qa_prompt)
|
232 |
#question_generator = LLMChain(llm=llm, prompt=CONDENSE_QUESTION_PROMPT)
|
233 |
+
#embeddings = load_embeddings()
|
234 |
|
235 |
|
236 |
+
# uploaded_file = st.file_uploader('Choose your .pdf file', type="pdf")
|
237 |
+
# print(uploaded_file)
|
238 |
+
# if uploaded_file is not None:
|
239 |
+
# pdf_reader = PdfReader(uploaded_file)
|
240 |
+
# text = ""
|
241 |
+
# for page in pdf_reader.pages:
|
242 |
+
# text += page.extract_text()
|
243 |
+
# print(text)
|
244 |
+
# db = FAISS.from_texts(text, embeddings)
|
245 |
|
246 |
+
memory = ConversationBufferMemory(memory_key="chat_history",
|
247 |
+
return_messages=True,
|
248 |
+
input_key="query",
|
249 |
+
output_key="result")
|
250 |
+
qa_chain = RetrievalQA.from_chain_type(
|
251 |
+
llm = llm,
|
252 |
+
chain_type = "stuff",
|
253 |
+
retriever = db.as_retriever(search_kwargs = {'k':3}),
|
254 |
+
return_source_documents = True,
|
255 |
+
memory = memory,
|
256 |
+
chain_type_kwargs = {"prompt":qa_prompt})
|
257 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
|
259 |
# qa_chain = ConversationalRetrievalChain(
|
260 |
# retriever =db.as_retriever(search_kwargs={'k':2}),
|
|
|
266 |
# #get_chat_history=lambda h :h
|
267 |
# )
|
268 |
|
269 |
+
for message in st.session_state.messages:
|
270 |
+
with st.chat_message(message["role"]):
|
271 |
+
st.markdown(message["content"])
|
272 |
|
273 |
+
# Accept user input
|
274 |
+
if query := st.chat_input("What is up?"):
|
275 |
+
# Display user message in chat message container
|
276 |
+
with st.chat_message("user"):
|
277 |
+
st.markdown(query)
|
278 |
+
# Add user message to chat history
|
279 |
+
st.session_state.messages.append({"role": "user", "content": query})
|
280 |
|
281 |
+
start = time.time()
|
282 |
|
283 |
+
response = qa_chain({'query': query})
|
284 |
|
285 |
+
# url_list = set([i.metadata['source'] for i in response['source_documents']])
|
286 |
+
#print(f"condensed quesion : {question_generator.run({'chat_history': response['chat_history'], 'question' : query})}")
|
287 |
+
|
288 |
+
with st.chat_message("assistant"):
|
289 |
+
st.markdown(response['result'])
|
290 |
+
|
291 |
+
end = time.time()
|
292 |
+
st.write("Respone time:",int(end-start),"sec")
|
293 |
+
print(response)
|
294 |
+
|
295 |
+
# Add assistant response to chat history
|
296 |
+
st.session_state.messages.append({"role": "assistant", "content": response['result']})
|
297 |
|
298 |
+
# with st.expander("See the related documents"):
|
299 |
+
# for count, url in enumerate(url_list):
|
300 |
+
# #url_reg = regex_source(url)
|
301 |
+
# st.write(str(count+1)+":", url)
|
302 |
|
303 |
+
clear_button = st.button("Start new convo")
|
304 |
+
if clear_button :
|
305 |
+
st.session_state.messages = []
|
306 |
+
qa_chain.memory.chat_memory.clear()
|
307 |
|
308 |
|
309 |
if __name__ == '__main__':
|