Spaces:
Sleeping
Sleeping
change chunk size, embedding model
Browse files
app.py
CHANGED
@@ -159,20 +159,20 @@ class UploadDoc:
|
|
159 |
|
160 |
return documents
|
161 |
|
162 |
-
def split_docs(documents,chunk_size=
|
163 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=
|
164 |
sp_docs = text_splitter.split_documents(documents)
|
165 |
return sp_docs
|
166 |
|
167 |
@st.cache_resource
|
168 |
def load_llama2_llamaCpp():
|
169 |
core_model_name = "llama-2-7b-chat.Q4_0.gguf"
|
170 |
-
n_gpu_layers = 32
|
171 |
n_batch = 512
|
172 |
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
|
173 |
llm = LlamaCpp(
|
174 |
model_path=core_model_name,
|
175 |
-
n_gpu_layers=n_gpu_layers,
|
176 |
n_batch=n_batch,
|
177 |
callback_manager=callback_manager,
|
178 |
verbose=True,n_ctx = 4096, temperature = 0.1, max_tokens = 256
|
@@ -198,7 +198,7 @@ def set_custom_prompt():
|
|
198 |
|
199 |
@st.cache_resource
|
200 |
def load_embeddings():
|
201 |
-
embeddings = HuggingFaceEmbeddings(model_name = "
|
202 |
model_kwargs = {'device': 'cpu'})
|
203 |
return embeddings
|
204 |
|
|
|
159 |
|
160 |
return documents
|
161 |
|
162 |
+
def split_docs(documents,chunk_size=1000):
|
163 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=200)
|
164 |
sp_docs = text_splitter.split_documents(documents)
|
165 |
return sp_docs
|
166 |
|
167 |
@st.cache_resource
|
168 |
def load_llama2_llamaCpp():
|
169 |
core_model_name = "llama-2-7b-chat.Q4_0.gguf"
|
170 |
+
#n_gpu_layers = 32
|
171 |
n_batch = 512
|
172 |
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
|
173 |
llm = LlamaCpp(
|
174 |
model_path=core_model_name,
|
175 |
+
#n_gpu_layers=n_gpu_layers,
|
176 |
n_batch=n_batch,
|
177 |
callback_manager=callback_manager,
|
178 |
verbose=True,n_ctx = 4096, temperature = 0.1, max_tokens = 256
|
|
|
198 |
|
199 |
@st.cache_resource
|
200 |
def load_embeddings():
|
201 |
+
embeddings = HuggingFaceEmbeddings(model_name = "thenlper/gte-base",
|
202 |
model_kwargs = {'device': 'cpu'})
|
203 |
return embeddings
|
204 |
|