Spaces:
Sleeping
Sleeping
File size: 6,395 Bytes
c1cc993 699053c c1cc993 699053c c1cc993 699053c c1cc993 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import os
import streamlit as st
import re
from tempfile import NamedTemporaryFile
import time
import pathlib
#from PyPDF2 import PdfReader
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from langchain_community.llms import LlamaCpp
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.chains import RetrievalQA
from langchain_community.vectorstores import FAISS
from langchain.chains.question_answering import load_qa_chain
from langchain.chains.conversational_retrieval.prompts import CONDENSE_QUESTION_PROMPT
from langchain_community.document_loaders import TextLoader
from langchain_community.document_loaders import PyPDFLoader
from langchain.memory import ConversationBufferWindowMemory
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.memory.chat_message_histories.streamlit import StreamlitChatMessageHistory
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.llms import HuggingFaceHub
SECRET_TOKEN = os.getenv("HF_TOKEN")
os.environ["HUGGINGFACEHUB_API_TOKEN"] = SECRET_TOKEN
# sidebar contents
with st.sidebar:
st.title('DOC-QA DEMO ')
st.markdown('''
## About
Detail this application:
- LLM model: Phi-2-4bit
- Hardware resource : Huggingface space 8 vCPU 32 GB
''')
def split_docs(documents,chunk_size=1000):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=200)
sp_docs = text_splitter.split_documents(documents)
return sp_docs
@st.cache_resource
def load_llama2_llamaCpp():
core_model_name = "phi-2.Q4_K_M.gguf"
#n_gpu_layers = 32
n_batch = 512
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
llm = LlamaCpp(
model_path=core_model_name,
#n_gpu_layers=n_gpu_layers,
n_batch=n_batch,
callback_manager=callback_manager,
verbose=True,n_ctx = 4096, temperature = 0.1, max_tokens = 128
)
return llm
def set_custom_prompt():
custom_prompt_template = """ Use the following pieces of information from context to answer the user's question.
If you don't know the answer, don't try to make up an answer.
Context : {context}
Question : {question}
Please answer the questions in a concise and straightforward manner.
Helpful answer:
"""
prompt = PromptTemplate(template=custom_prompt_template, input_variables=['context',
'question',
])
return prompt
@st.cache_resource
def load_embeddings():
embeddings = HuggingFaceEmbeddings(model_name = "thenlper/gte-base",
model_kwargs = {'device': 'cpu'})
return embeddings
def main():
data = []
sp_docs_list = []
msgs = StreamlitChatMessageHistory(key="langchain_messages")
print(msgs)
if "messages" not in st.session_state:
st.session_state.messages = []
repo_id = "mistralai/Mistral-7B-Instruct-v0.2"
llm = HuggingFaceHub(
repo_id=repo_id, model_kwargs={"temperature": 0.1, "max_length": 128})
# llm = load_llama2_llamaCpp()
qa_prompt = set_custom_prompt()
embeddings = load_embeddings()
uploaded_file = st.file_uploader('Choose your .pdf file', type="pdf")
if uploaded_file is not None :
with NamedTemporaryFile(dir='PDF', suffix='.pdf', delete=False) as f:
f.write(uploaded_file.getbuffer())
print(f.name)
#filename = f.name
loader = PyPDFLoader(f.name)
pages = loader.load_and_split()
data.extend(pages)
#st.write(pages)
f.close()
os.unlink(f.name)
os.path.exists(f.name)
if len(data) > 0 :
embeddings = load_embeddings()
sp_docs = split_docs(documents = data)
st.write(f"This document have {len(sp_docs)} chunks")
sp_docs_list.extend(sp_docs)
try:
db = FAISS.from_documents(sp_docs_list, embeddings)
memory = ConversationBufferMemory(memory_key="chat_history",
return_messages=True,
input_key="query",
output_key="result")
qa_chain = RetrievalQA.from_chain_type(
llm = llm,
chain_type = "stuff",
retriever = db.as_retriever(search_kwargs = {'k':3}),
return_source_documents = True,
memory = memory,
chain_type_kwargs = {"prompt":qa_prompt})
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Accept user input
if query := st.chat_input("What is up?"):
# Display user message in chat message container
with st.chat_message("user"):
st.markdown(query)
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": query})
start = time.time()
response = qa_chain({'query': query})
with st.chat_message("assistant"):
st.markdown(response['result'])
end = time.time()
st.write("Respone time:",int(end-start),"sec")
print(response)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": response['result']})
with st.expander("See the related documents"):
for count, url in enumerate(response['source_documents']):
st.write(str(count+1)+":", url)
clear_button = st.button("Start new convo")
if clear_button :
st.session_state.messages = []
qa_chain.memory.chat_memory.clear()
except:
st.write("Plaese upload your pdf file.")
if __name__ == '__main__':
main() |