
ICIC Express Letters ICIC International ⓒ2020 ISSN 1881-803X

Volume 14, Number 5, May 2020 pp. 1–8

Comparing the performance of question answering by a large-scale language

model on a resource-constrained machine

Ponrudee Netisopakul and Sira Haruethaipree

School of Information Technology, King Mongkut’s Institute of Technology Ladkrabang

1 Chalong Krung, 1 Alley, Lat Krabang, Bangkok 10520

64607065@kmitl.ac.th

Received October XXX; accepted January XXX

ABSTRACT. The development of large language models (LLMs) like ChatGPT and

Google Bard has led to the creation of intelligent chatbots and question-answering

systems that are gaining widespread popularity. However, there are still limitations in

using LLMs to develop applications, including the substantial computational resources

required for finetuning and deployment. This paper studies and experiments with two

techniques to reduce the computing resources required for developing a question-

answering system using LLMs. A quantization technique is employed to compress the

model's size, and the application of Retrieval-Augmented Generation (RAG) techniques

is utilized for information retrieval. The study compares the performance of

compressed-size models using Quantization and RAG against the original-sized models.

The results show that quantizing the model can compress the VRAM resources used in

the GPU between 38% to 57% while still achieving 68.9% accuracies comparing to

70% in the non-compress model.

Keywords: Large language models, Document Question Answering (DQA), Retrieval-

Augmented Generation (RAG), Quantization, Resource-constrained machine.

1. Introduction.

The growth of artificial intelligence in natural language processing (NLP) is of great

interest today, as there exist large language models (LLMs) with billions of parameters.

These LLMs have been applied to the creation of chatbots, leading to the widespread

adoption of applications such as ChatGPT [1] and Google Bard [2]. These applications

can interact with users, answer questions, and provide guidance on problem-solving.

Although chatbots powered by artificial intelligence, such as ChatGPT and Google Bard,

can answer a wide range of questions for users, they still have limitations. For example,

they cannot answer questions in some specific domains, or answer questions about recent

events. This makes it necessary for organizations to finetuning the pre-trained model with

a specific set of document data. However, the finetuning process and the generation of

answers from a large language model require a relatively high amount of processing

resources. This paper studies two techniques, namely Quantization and Retrieval

Augmented Generation (RAG), helping to utilize LLMs based document question-

answering system on a machine with limited resources.

Quantization [3] is a technique for reducing the size of a model on the memory, making

it easier to deploy large language models. This is done by converting the number of bits

in the model from float32 or float16 to INT8 or INT4. Retrieval Augmented Generation

(RAG) [4] is a technique that combines retrieval and generation techniques applied to

document question-answering applications without finetuning.

This study conducted experiments on a computer with limited resources setting,

compared model performance and memory usage on various sizes of Quantization. The

research questions are:

1. Can a large language model be applied to a document question-answering system

using only a computer with limited resources.

2. Can we use the principles of Retrieval Augmented Generation for creating a

document question-answering system without finetuning LLMs.

3. What are the comparative performances of a LLMs-based document question-

answering system when using various sizes of quantization.

The scope of this study is as follows. (1) The large language model used is an open-

source model called Llama2-7b-chat [5], which has 7 billion parameters. (2) The method

for the model compression technique used is called Absolute maximum quantization.

Three sizes of quantization will be compared in the experiment; those are FP16, INT8,

and INT4. (3) The document question-answering system will operate through the

Langchain framework.

The organization of this paper is as follows. Section 2 reviews related works and

technologies. Section 3 presents research methodology, including dataset preparation,

DQA construction by applying RAG technique, and experimental design. Section 4

presents the experimental results and discussion. Finally, section 5 provides the

conclusions and suggestions for future research.

2. Related works and technologies

2.1 Quantization. Large language models, which contain weights, vectors, and input

sequences, are stored in random access memory (RAM). Currently, most large language

models have billions of parameters and are stored in FP32 and FP16 formats. Loading the

weights of a 1 billion parameter model requires approximately 4 GB of RAM in FP32

format, while only 2 GB of RAM is required in FP16 format. For example, running the

Llama-2-7b-chat prototype model with FP32 bits requires approximately 28 GB of

memory, which is much more than the hardware resources most people can support.

Therefore, this study will start by comparing the performance of models with FP16 size

and lower.

Absolute maximum quantization [6] is a method of reducing the number of bits in a

model. It can be used to compress the size of a model to 8-bits and 4-bits by adjusting the

weights. For example, equation (1) shows how to compress the number of bits from FP16

weights to INT8 weights, which has a total of 8 bits and can store 255 different values in

the range of [-127,127]. The reduction of the model size to INT4 format is similar to the

INT8 quantization method, but it only has 4 bits, which can store 15 different values in

the range [-7,7].

𝑋𝑞𝑢𝑎𝑛𝑡 = 𝑟𝑜𝑢𝑛𝑑
127

max|𝑋|
 ∙ 𝑋 (1)

𝑋𝑑𝑒𝑞𝑢𝑎𝑛𝑡 =
𝑚𝑎𝑥|𝑥|

127
∙ 𝑋𝑞𝑢𝑎𝑛𝑡 (2)

Equation 1 is the quantization equation. It divides the maximum value of INT8, which

is 127, by max|X|, which represents the maximum value of weights within the input

dataset. This number is called the scaling factor, as it will be used to adjust each input

weight in the input dataset or layer by multiplying to each input vector X , then rounded

the value to an integer. Equation 2 is the de-quantization equation, which converts the

weight value from INT8 to FP16. As can be seen in Figure 1, the converted weight value

will be slightly different, which means that the conversion of the model size may affect

the model’s accuracy.

Figure 1. Shows an example of Absolute maximum quantization process using INT8 format

[7] .

When the model is called to generate an answer, the model will load those INT4 or

INT8 weight values and convert them back to FP16 vector format for calculation with the

input vector. This method is called de-quantize as shown in equation 3.
𝑌 = 𝑋 ∗ 𝑑𝑒𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒(𝑊) (3)

After quantization, the model is converted to GGML format [8] GGML is a library

written in C that makes it easy and flexible to use machine learning models. It supports a

variety of quantization formats, including 4-bit, 5-bit, and 8-bit. Models stored in GGML

format can be loaded and deployed on both CPU and GPU through the llama.cpp library

[9]

2.2 RAG (Retrieval Augmented Generation) was invented in 2020 to solve the problem

of pre-trained language models used for text generation or chatbots. Instead of fine-tuning

with a specific document dataset to answer questions for specialized tasks. RAG uses the

Retriever method to help find the closest text in the document to the question and then

sends the closest result to the large language model to generate the output, eliminating

the need for fine-tuning.

Figure 2. RAG combines the Retriever method with a pre-trained model [4]

Figure 2 shows the overview of RAG architecture, which combines the Retriever

method with a pre-trained model. Here, x is the query that will be sent to match the

document set to find the Maximum Inner Product Search (MIPS) according to the

specified top-k number, which is replaced by z, while y is the final output. The

architecture consists of two main parts:

1. Non-Parametric memory component: Instead of fine-tuning the model as usual, it is

replaced with a relevance retrieval method. The query x, which has been converted to a

vector format, is used to match the vectors of the document set to obtain a similarity score.

In Figure 2, Maximum Inner Product Search (MIPS) is replaced with the Euclidean

distance (L2) method. The documents with the highest similarity scores to the query are

then used in the parametric section. The number of documents depends on the specified

k value.

2. Parametric memory component: This component uses a pre-trained text generation

model to generate answers from the answers obtained from the non-parametric

component. Usually, it utilizes the transformer architecture, which has the decoder part

or both the encoder and decoder, such as BART, T5, etc.

To find the documents that are most likely to answer the question, it is necessary to

find the similarity using the Euclidean distance method (L2) as shown in equation 4.
𝑖 = 𝑘 − 𝑎𝑟𝑔𝑚𝑖𝑛𝑖||𝑥 − 𝑦𝑖|| (4)

From equation 4, the symbol ||.|| means Euclidean distance (L2), x is the query or the

question, which is compared to the entire text document represented by y to find the most

similar piece of text. Both x and y are represented in the form of vectors. The smaller the

output value, the more similar the document is to the question. The selection of the results

is similar to the principle of the nearest neighbor (Nearest neighbor) algorithm, that is,

selecting the top-k most similar documents y to answer the question x.

2.3 Large language models (LLMs) are language models based on the transformer

architecture with hundreds of millions to billions of parameters or more and are trained

on large datasets. Examples of LLMs are GPT-3 [10] LLaMa [11] etc. In this study, we

use a language model called Llama2-7b-chat[5], which was developed by Meta. It has 7

billion parameters, can support 4096 tokens in one input, and is fine-tuned on a

conversational dataset to make the model good at answering questions in a chatbot-like

interactive format. Reinforcement Learning with Human Feedback (RLHF)[12] is used

as a supplement to make the model answer questions in a way that is close to what humans

expect.

2.4 Text embedding models are models that represent text in the form of vectors. It is

used to find the most similar meanings of text within the vector space. Previous

embedding model, such as the Glove model [13] has insufficient ability to learn from

surrounding context; while the transformer architecture has improved the ability to learn

from the context of words through the self-attention method. BERT [14] text embedding

model, which is a pre-trained model with a large dataset, can be used to create a text

embedding model. Later, SBERT [15] showed that the benefits of fine-tuning through

the transformer architecture model can improve the performance of text embedding

models. This led to competition for the performance of text embedding models through

model tuning techniques. Examples of text embedding models include text-embedding-

ada-002 [16] sentence-t5 [17] etc.

 Technologies and tools used in this research are as follows. Langchain [18] is a

framework to create applications with the RAG technique, from data retrieval to large

language models (LLMs) response generation. First, Llama-2 in GGML format is

downloaded from HuggingFace [19] then, the designed experiments are conducted on

Kaggle [20] to see memory usages and accuracies in different quantized formats, which

are FP16, INT8, and INT4. Faiss [21] library is used to calculate text vector similarities

during the RAG retrieval step. Finally, HuggingFace space [19] is used to deploy and

demonstrate the question-answering application.

3. Methodology

3.1 Dataset. The data used in this study to compare models is the Wikipedia subset of the

TriviaQA dataset [22] This subset is a reading comprehension dataset that contains about

77,000 rows of data collected from Wikipedia articles. Each row of data contains

question-answer-evidence triples. The last evidence text related to the question and

answer will be used with the RAG method. Due to the huge time-consuming nature of the

experiments, the results presented in this paper are obtained only first 1000 rows of the

validation subset, which contains 7993 rows, comprising of 12.5% of the dataset.

3.2 Document Question Answering System Construction

Figure 3 shows the overview steps of creating a question-answering system using the

technique called RAG (Retrieval Augmented Generation) through the Langchain tool. In

short, there are four steps: data preparation, text-to-vector conversion and storage, similar

text retrieval from the document using RAG, and finally, answer generation.

Figure 3. a DQA system construction process using the RAG method and the Langchain library.

3.2.1 Data Preparation. In general, document datasets are usually imported in the form

of text, with varying lengths. When used with natural language models, this can cause

errors because each model has a maximum supported input token size. In particular, the

Llama-2-7b-chat model used has a maximum token size of 4096. Therefore, all input

text must go through a document splitting process to fit the model.

Figure 4. Example of the document splitting process.

From Figure 4, the document will be divided into chunks, each limited to 30 characters,

and the blue characters indicate the overlapping parts specified by the chunk overlap

parameter.

Chunk size is the number of characters that will be stored in a chunk. Chunk Overlap

specifies how many characters of the previous text will overlap. This study sets chunk

size to 1000 and chunk overlap to 200.

3.2.2. Text to vector conversion and storage. Word vectors of chunked text are created

using an embedding model. These vectors are stored to be used in the next retrieval step.

We chose the Thenlper/gte-base [23] embedding model because the model is smaller than

other models in the top ten list of the Massive Text Embedding Benchmark (MTEB) [24]

ranking. Faiss is used as a vector store for the converted text vectors.

3.2.3 Retrieval-Augmented Generation (RAG). RAG is the Non-Parametric

component of the system. It takes chunked text vectors stored in FAISS and compares to

the query vector. The similarity scores are calculated and ranked using the Euclidean

distance. Chucks with Top-K similarity will be selected for generating the answer in the

next step. In the document question-answering system, we expect that the matching

answer from the document should not be in many places. In addition, the larger K will

result in longer computing time. Therefore, in this study, we start by setting K equals to

3.

3.2.4 Prompt and Generate. Prompt is an instruction to the language model to guide its

response. Prompt can help the language model to understand the context and generate

responses that are consistent with the task. Prompt in this study consists of three parts as

shown in Figure 5. The command part specifies the context of the question and the

response’s format. For example, the command part may specify that the model should

generate an answer of at least three sentences, or that the model should answer "I don't

know" if it is not sure of the answer. The context part is the top-k text from the previous

retrieval step. The question part is the question submitted to the RAG method. Both

context part and question part will be replaced with a ranked response and a question from

TriviaQA.

3.3 Experimental Design. There are two sets of experiments comparing the quantized

language models performance with the original model. The first experiment measures the

amount of memory usage when varying the number of input tokens. The second

experiment measures accuracies of the models compared to solutions from the TriviaQA

dataset.

3.3.1 Memory Usages with Varied Input Tokens. The Llama2-7b-chat model used in

the experiment can support an input length of 4096 tokens. This means that the model can

understand long text. However, the longer the input, the more computational resources

are required to generate a response. The experiment feeds inputs with token lengths of

1000, 2000, 3000, and 4000 to models of different quantized sizes: FP16, INT8, and INT4.

These experiments are conducted on 10 samples from the TriviaQA dataset to measure

the average memory usage in megabytes (MB).

3.3.2 Question Answering Performance of Different Quantized Models. The accuracy

of question answering for each quantized model (FP16, INT8, and INT4) is compared

using the TriviaQA dataset of 1000 rows. The accuracy of each model is measured and

compared between the original pre-trained models and the RAG technique, both without

fine-tuning.

The accuracy is measured using the Exact Match percentage (EM) formula shown in

equation 5 [25] Where M represents the number of questions that the model answered

correctly, and N represents the total number of questions in the experiment.

𝐸𝑀 =
𝑀

𝑁
 𝑋 100 (5)

 For example, if there are a total of 100 questions, the model can answer 50 questions

correctly. This makes the EM accuracy score equal to 0.5 or 50%.

4. Results and Discussion. The experimental results comparing the performance of the

quantized models are divided into two parts. The first part discussed the experimental

results for the memory usage for each quantized model when feeding inputs with different

numbers of tokens. The second part discussed the experimental results of the question-

answering system performance of each quantized model.

4.1 Comparison Results Of Memory Usages with Varied Input Tokens. From the

experimental design in section 3.3.1, the llama2-7b-chat model was quantized, from FP16

custom_prompt_template = “Use the following pieces of context to answer the question at the

end. If you don’t know the answer, just say that you don’t know, Don’t try to make up an

answer. Please generate answer not too long and easy understand.”

Context : {context}

Question : {question}

Generated answer …

Figure 5. Example prompt uses to generate an answer.

size to the models with INT8 and INT4 sizes. Each was tested to measure the amount of

memory usage for generating answers with varied sizes of input tokens 100, 1000, 2000,

3000, and 4000, respectively.

The results shown in Figure 6 show that the Llama2-7b-chat model, when feeding the

input length of 4000 tokens with the model size of FP16, used up to 15,842 MB or 15.8

GB of memory. This suggests that at least 16 GB RAM should be allocated on a PC for

one to run the model in FP16 format. Meanwhile, the quantized model size of INT8 used

only 9,829 MB or 9.8 GB of memory, reducing FP16 by 6,013 MB or 6.0 GB. While the

quantized INT4 model can compress the amount of memory used in calculations to only

6,855 MB or 6.8 GB. The results show that quantizing the model can compress the

VRAM resources used in the GPU between 38% in the INT8 model and 57% in the INT4

model.

Figure 6. Show the amount of memory used for each size of the model, compared to the

number of token input sizes.

4.2 Comparison Results of Question Answering Performance From the experimental

design in section 3.3.2, the experiment compares question-answering performance across

different quantized models in both pre-trained model and RAG-based approaches.
Table 1. The accuracy of each quantized model measured in Exact Match percentage,

comparing a pretrained model to pretrained with RAG technique (zero-shot learning)

Model

type
Pretrained (%) Pretrained + RAG (%)

FP16 59.0 70.0

INT8 61.2 68.2

INT4 60.6 68.9

Table 1 revealed the performance of the question-answering system for each size of

pre-trained models (the second column) and pretrained with RAG technique (the third

column), both without finetuning. The accuracy ranged from 59.0 - 61.2 %, for the

pretrained models, and from 68.2-70.0% for the pretrained with RAG models. This

showed improvements between 7%-11%. Upon the investigation of answers mismatched

by the pretrained model versus answer matched correctly by pretrained with RAG model,

answers containing proper names from specific domains are often found. Hence, the study

suggests that when lacking a specific domain knowledge in the context, the pretrained

model often generate “hallucinated” answers which is not the correct answer. Therefore,

the RAG technique not only helps to eliminate the finetune step but also helps to improve

the DQA accuracies.

However, the experiment results in the same model (the same column) are about the

same, regardless of the model sizes. The accuracies are between 59.0-61.2 for the

pretrained models and between 68.2-70 for the pretrained with RAG models. Hence,

reducing the bit number from FP16 to INT8 and INT4 did not significantly affect the

performance of the models, either pretrained only or pretrained with RAG.

5. Conclusion. To implement a question-answering system using large language models

on limited resource machines, this paper presented a quantization technique that can

compress the amount of memory used, and a RAG technique that can be used with

pretrained model without the need for fine-tuning, The two experiments showed that this

solution can reduce the memory usages, save time and resources that may be unattainable

for fine-tuning, while still keeping the performance of the question answering system.

The trained model is deployed on HuggingFace’s 8vCPU 32GB RAM for a

demonstration purpose.

The method presented in this study is just one approach that aids in reducing memory

usage. Meanwhile, there are various techniques for model quantization available today,

such as NF4 [26] which employs quantization techniques to adjust weight values within

the range of -1 to 1, following a uniform distribution. This helps address outliers and

enhance model accuracy. Another example is GPTQ [27] which utilizes post-training

quantization, requiring testing with a dataset to facilitate the comparison of loss values

before and after adjustment, aiming for minimal loss. We hope that this study can provide

a guideline for readers who need to employ large language models with a limited resource

machine.

REFERENCES

[1] OpenAI, Introducing ChatGPT, https://openai.com/blog/chatgpt, Accessed 30 March 2022.

[2] S. Pichai, An important next step on our AI journey, Google the keyword,

https://blog.google/technology/ai/bard-google-ai-search-updates/ , Accessed 2023.

[3] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney and K. Keutzer, A Survey of Quantization

Methods for Efficient Neural Network Inference. arXiv preprint arXiv: 2103.13630, 2021.

[4] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler, M. Lewis, W. Yih, T.

Rocktäschel, S. Riedel, & D. Kiela. Retrieval-Augmented Generation for Knowledge-Intensive NLP

Tasks. Advances in Neural Information Processing Systems, vol. 33, pp. 9459-9474, 2020.

[5] Meta, Introducing Llama 2 The next generation of our open source large language model,

https://ai.meta.com/llama/ , Accessed 2023.

[6] M. Labonne, Introduction to Weight Quantization, https://towardsdatascience.com/introduction-to

weight-quantization-2494701b9c0c, Accessed 2023.

[7] Int8 about Machine learning, Local Large Language Models, https://int8.io/local-large-language-

models-beginners-guide/, Accessed May 31, 2023.

[8] G. Gerganov, ggml, github, https://github.com/ggerganov/ggml. Accessed 2023.

[9] G. Gerganov, Llama.cpp, github, https://github.com/ggerganov/llama.cpp. Accessed 2023.

[10] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G.

Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D.

M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark,

C. Berner, S. McCandlish, A. Radford, I. Sutskever, & D. Amodei, Language Models are Few-Shot

Learners. Advances in neural information processing systems vol. 33, pp. 1877-1901, 2020.

[11] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P.

Bhargava, S. Bhosale, D. Bikel, Llama 2: Open Foundation and Fine-Tuned Chat Models. arXiv

preprint arXiv:2307.09288, 2023.

[12] Z. Li, Z. Yang, & M. Wang, Reinforcement Learning with Human Feedback: Learning Dynamic

Choices via Pessimism. arXiv preprint arXiv:2305.18438, 2023.

[13] R. Brochier, A. Guille, & J. Velcin, Global Vectors for Node Representations. The World Wide Web

Conference, pp. 2587-2593, 2019.

[14] J. Devlin, M. Chang, K. Lee, K. Toutanova, BERT: Pre-training of Deep Bidirectional Transformers

for Language Understanding. Proceedings of naacL-HLT. Vol. 1, pp. 2, 2019.

[15] N. Reimers, I. Gurevych, Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks.

arXiv preprint arXiv:1908.10084, 2019.

[16] R. Greene, T. Sanders, L. Weng, Arvind Neelakantan New and improved embedding model, OpenAI,

https://openai.com/blog/new-and-improved-embedding-model, December 15, 2022, Accessed 2023.

[17] J. Ni, G. H. Ábrego, N. Constant, J. Ma, K. B. Hall, D. Cer, & Y. Yang, Sentence-T5: Scalable

Sentence Encoders from Pre-trained Text-to-Text Models. arXiv preprint arXiv:2108.08877, 2021.

[18] LangChain, Get your LLM application from prototype to production, https://www.langchain.com/,

Accessed 2023.

[19] Hugging Face, The AI community building the future, https://huggingface.co/ , Accessed 2023.

[20] Kaggle: Your Machine Learning and Data Science Community, https://www.kaggle.com/ , Accessed

2023.

[21] Faiss, Welcome to Faiss Documentation, https://faiss.ai/index.html, Accessed 2023.

[22] M. Joshi, E. Choi, D. S. Weld, & L. Zettlemoyer, TriviaQA: A Large Scale Distantly Supervised

Challenge Dataset for Reading Comprehension. arXiv preprint arXiv:1705.03551, 2017.

[23] Z. Li, X. Zhang, Y. Zhang, D. Long, P. Xie, & M. Zhang, Towards General Text Embeddings with

Multi-stage Contrastive Learning. arXiv preprint arXiv:2308.03281, 2023.

[24] HuggingFace Spaces, Massive Text Embedding Benchmark (MTEB) Leaderboard,

https://huggingface.co/spaces/mteb/-leaderboard , Accessed 2023.

[25] Bai, Y., & Wang, D. Z. More than reading comprehension: A survey on datasets and metrics of

textual question answering. arXiv preprint arXiv:2109.12264, 2021.

[26] T. Dettmers, A. Pagnoni, A. Holtzman, & L. Zettlemoyer, QLoRA: Efficient Finetuning of

Quantized LLMs. arXiv preprint arXiv:2305.14314, 2023.

[27] E. Frantar, S. Ashkboos, T. Hoefler, & D. Alistarh, GPTQ: Accurate Post-Training Quantization for

Generative Pre-trained Transformers. arXiv preprint arXiv:2210.17323, 2022.

Point-by-point Response to Reviewer's Comments

Reviewer 1

Reviewer’s comments Point-by-point response Page
number

This paper proposed a method based
on quantization technique to improve
performance of question-answering
system. Results of three models are
compared, and improvements in terms
of memory usage are shown.
Generally, this paper is clearly
explained. Some suggestions for
improving quality of the paper are as

follows: (1) In Figure 1 & 2, font size of

characters are too small. It is difficult
to read.

Thank you for your comments. We have modified
figure 1 and 2 to ensure that all font sizes are
readable.

Figure 1 and
figure 2 –
page 3

(2) There are a number of

abbreviations, the full name of each
term should be put at the first
mention.

The authors have thoroughly checked all
abbreviations and put the full terms with the
abbreviation at the first mention before using the
abbreviations in following mentions.

Abstract,
Introduction
and Related
work – page
1-2

Reviewer 2

Reviewer’s comments Point-by-point response Page
number

1. Did the author train the large
language model on the Kaggle?
However, the author presented in the
abstract, "This paper demonstrates an
approach to develop a question-
answering system with a limited
resource computer." Why does the
author not train the language model on
the PC?

It is possible that the abstract is misleading. We
have corrected it as followed “This paper studies and

experiments with two techniques to reduce the computing

resources required for developing a question-answering

system using LLMs.”
The experiments presented in this paper (figure 6)
were conducted on Kaggle with GPUs because the
authors’ PC has only 4 GB RAM (4000 MB), which
is not viable to run the experiment.
Based on figure 6, the authors would suggest that
PCs should have at least 16 GB to run the FP16
model.
The authors also add statements to clarify this
point in section 2.4 and section 4.1.

Abstract –
page 1
Section
2.4 -page
4
and
section 4.1
– page 7

2. Did the author replicate Figures 1 and
2 or copy the original images (papers [8]
and [4])? If the author copied the

Thank you for your suggestion. Figures 1 and 2 are
redrawn based on your suggestion.

Figure 1
and figure
2 – page 3

Reviewer 2

Reviewer’s comments Point-by-point response Page
number

original images, please replicate these
Figures.

3. Could the author remove Section 2.2,
technologies and tools used? However,
the author could briefly explain all these
technologies and tools, may be present
in one or two lines.

Section 2.2 are removed and replaced with a short
paragraph explained all the technologies used in
this study.

The last
paragraph
of Section
2 - Page 4

4. As shown in Table 1, why does the
author highlight (bold fonts) at "61.2%"?

In table 1, 61.2% is the highest accuracies for the
pretrained model, which are obtained from INT8
format; while 70% is the highest accuracies for the
pretrained+RAG model. We did not change
anything in table 1.

Table 1 –
page 7

5. Could the author compare the
proposed method with other research?

At the time of our study, we did not find any
research that use the same setting as our study.
There are other settings, such as in reference [26-
27] which may not be fair to compare to ours.

The last
paragraph
in the
Conclusion
section –
page 8

Reviewer 3

Reviewer’s comments Point-by-point response Page
number

- The abstract should contain the
results.

The authors added the results in the abstract as
suggested.

Abstract-
page 1

- Figure names of Figures 2 to 5 are too
long.

We rewrite the captions of Figure 2 to Figure 5,
moving the details explanation into the context.

Figure 1 -
figure 5 ‘s
captions –
Page 3,5,6

- In 3.2.2, The authors mention "Chucks
with Top-K similarity", Why K = 3 please
describe more detail.

In the document question-answering system, we
expected that the matching answer from the
document should not be in many places. In
addition, the larger K will result in longer
computing time. Therefore, in this study, we
started by setting K=3. We add a sentence to
explain this point in the paper.

Section
3.2.3 –
page 5-6

- In 3.3.2 "The accuracy of question
answering for each quantized model
(FP16, INT8, and INT4) is compared
using the TriviaQA dataset of 1000
rows". The authors should describe, why
1000 rows of data for testing?

The experiments are very time-consumming;
processing 1000 rows of TriviaQA in DQA system
took us 2 hours 33 mins for the INT4 model. Six
experiments on 1000 rows took us about 15
hours. The authors think that experiment with
1000 rows of data (comprises 12.5% of of TriviaQA
Wikipedia validation set, which contains 7993

Section 3.1
– page 4

Reviewer 3

Reviewer’s comments Point-by-point response Page
number

rows) is enough to proof the crucial point of
proposed idea. The authors have clarified more
about the dataset in the section 3.1.

- The authors should describe Why the
EM(Exact Match) metric was chosen for
evaluating the performance of the
question-answering models?

The authors use the Exact Match (EM)
measurement based on this reference which is
added into the manuscript.
Bai, Y., & Wang, D. Z. More than reading
comprehension: A survey on datasets and metrics of
textual question answering. arXiv preprint
arXiv:2109.12264, 2021.

From the reference, the authors think that the EM
is a suitable measure for the DQA task in our
experiment.

Add
citation
[25] in
section
3.3.2 and
reference
reference
on the last
page.

- In 4.1 If possible, The authors should
present the comparison of the
quantized models' performance with
non-quantized models over an extended
period or across a variety of tasks to
demonstrate the quantized models'
robustness and reliability.

Due to our limited computing resources and
limited time to correct the paper, we cannot
provide comparisons over an extended period or
across a variety of tasks. We make a note of this in
our future work.

Last
paragraph
in section
5 :
conclusion
– page 8

- In 4.2, The authors should provide
additional information on the reasons
why quantized models and those
utilizing RAG differ in accuracy. This may
include an analysis of scenarios or types
of questions where each model
performs well or poorly.

Upon the investigation of answers mismatched by
the pretrained model versus answer matched
correctly by pretrained with RAG model, answers
containing proper names from specific domains
are often found. Hence, the study suggests that
when lacking a specific domain knowledge in the
context, the pretrained model often generate
“hallucinated” answers which is not the correct
answer. Therefore, the RAG technique not only
helps to eliminate the finetune step but also helps
to improve the DQA accuracies.
The authors have updated this information in
section 4.2.

Section 4.2
– page 8-9

Reviewer 4

Reviewer’s comments Point-by-point response Page
number

1. is figure 1 originate from
https://int8.io/local-large-language-
models-beginners-guide/?, so need to
replicate. (also figure 2)

We have redrawn figure 1 as suggested. Figure 1 and
2 on page 3.

2. In section 2.2, all topics are
explained shortly so no need to

We have rewritten section 2.2 into one short
paragraph.

Section 2 -
Page 4

Reviewer 4

Reviewer’s comments Point-by-point response Page
number

separate in sub-section, just separate
into paragraph

3. Section 4.2 the explanation of
the results (from table1) make confusing
such as, the author shows that
“Meanwhile, when applying the RAG
technique to each size of pre-trained
model, the question answering
performance increased significantly,
from 7-11% in all model sizes.”. however
the data shown table 1 decrease from
70 to 68.2

The comparison is between the pretrained model
only (the second column) and the pretrained
model + RAG model (the third column). It
increase from 59% to 70% in the first row (FP16)
and increase from 61.2% to 68.2% in the second
row (INT8), therefore, RAG enhance the
accuracies by 7-11%.
The author has modified content in section 4.2 to
clarify this.

Section 4.2
Page 7-8.

4. The authors mentioned that they
conducted experiments on a computer
using only CPU in order to compare
model performance and memory usage
on various sizes of Quantization.
However, they shows that this study
conducted a comparison experiment on
Kaggle using 2xGPU T4 with 15 GB of
memory per GPU.

The phrase “only CPU” in the original paper is
misleading, the authors have removed it. All
experiments are conducted on Kaggle with GPUs.
However, the deployed model is run on
HuggingFace’s 8vCPU 32GB RAM. We have
updated the manuscript to clarify this point.

Introduction
section –
page 2

Section 5 –
conclusion –
page 8

Note: The manuscript is shortened to 9 pages based on the ICIC journal 8-9 page limited.
(Some redundance contents are removed. Some unnecessary citations and references are
removed.)

