Spaces:
Sleeping
Sleeping
File size: 6,395 Bytes
ed84fba d72b356 ed84fba d72b356 ed84fba d72b356 ed84fba e9a64cd ed84fba d72b356 ed84fba 63adb58 ed84fba 63adb58 ed84fba 63adb58 ed84fba d72b356 ed84fba 63adb58 ed84fba 63adb58 ed84fba 63adb58 ed84fba e9a64cd ed84fba e9a64cd ed84fba e9a64cd ed84fba 63adb58 ed84fba d72b356 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import gradio as gr
import warnings
import cv2
import dlib
from pytorch_grad_cam.utils.image import show_cam_on_image
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
import numpy as np
import torch
from retinaface.pre_trained_models import get_model
from Scripts.model import create_cam, create_model
from Scripts.preprocess import crop_face, extract_face, extract_frames
from Scripts.ca_generator import get_augs
import spaces
warnings.filterwarnings('ignore')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
sbcl = create_model("Weights/weights.tar")
sbcl.to(device)
face_detector = get_model("resnet50_2020-07-20", max_size=1024, device=device)
face_detector.eval()
cam_sbcl = create_cam(sbcl)
targets = [ClassifierOutputTarget(1)]
# Examples
examples = ["Examples/Fake/Fake1.PNG", "Examples/Real/Real1.PNG", "Examples/Real/Real2.PNG", "Examples/Fake/Fake3.PNG",
"Examples/Fake/Fake2.PNG", ]
examples_videos = ['Examples/Fake1.mp4', 'Examples/Real1.mp4']
# dlib Models
dlib_face_detector = dlib.get_frontal_face_detector()
dlib_face_predictor = dlib.shape_predictor(
'Weights/shape_predictor_81_face_landmarks.dat')
@spaces.GPU
def predict_image(inp):
face_list = extract_face(inp, face_detector)
if len(face_list) == 0:
return {'No face detected!': 1}, None
with torch.no_grad():
img = torch.tensor(face_list).to(device).float() / 255
pred = sbcl(img).softmax(1)[:, 1].cpu().data.numpy().tolist()[0]
confidences = {'Real': 1 - pred, 'Fake': pred}
grayscale_cam = cam_sbcl(input_tensor=img, targets=targets, aug_smooth=True)
grayscale_cam = grayscale_cam[0, :]
cam_image = show_cam_on_image(face_list[0].transpose(1, 2, 0) / 255, grayscale_cam, use_rgb=True)
return confidences, cam_image
@spaces.GPU
def predict_video(inp):
face_list, idx_list = extract_frames(inp, 10, face_detector)
with torch.no_grad():
img = torch.tensor(face_list).to(device).float() / 255
pred = sbcl(img).softmax(1)[:, 1]
pred_list = []
idx_img = -1
for i in range(len(pred)):
if idx_list[i] != idx_img:
pred_list.append([])
idx_img = idx_list[i]
pred_list[-1].append(pred[i].item())
pred_res = np.zeros(len(pred_list))
for i in range(len(pred_res)):
pred_res[i] = max(pred_list[i])
pred = pred_res.mean()
most_fake = np.argmax(pred_res)
grayscale_cam = cam_sbcl(input_tensor=img[most_fake].unsqueeze(0), targets=targets, aug_smooth=True)
grayscale_cam = grayscale_cam[0, :]
cam_image = show_cam_on_image(face_list[most_fake].transpose(1, 2, 0) / 255, grayscale_cam, use_rgb=True)
return {'Real': 1 - pred, 'Fake': pred}, cam_image
with gr.Blocks(title="Deepfake Detection CL", theme='upsatwal/mlsc_tiet', css="""
@import url('https://fonts.googleapis.com/css?family=Source+Code+Pro:200');
#custom_header {
min-height: 3rem;
background-image: url('https://static.pexels.com/photos/414171/pexels-photo-414171.jpeg');
background-size: cover;
background-position: top;
color: white;
text-align: center;
padding: 0.5rem;
font-family: 'Source Code Pro', monospace;
text-transform: uppercase;
}
#custom_header:hover {
-webkit-animation: slidein 10s;
animation: slidein 10s;
-webkit-animation-fill-mode: forwards;
animation-fill-mode: forwards;
-webkit-animation-iteration-count: infinite;
animation-iteration-count: infinite;
-webkit-animation-direction: alternate;
animation-direction: alternate;
}
@-webkit-keyframes slidein {
from {
background-position: top;
background-size: 3000px;
}
to {
background-position: -100px 0px;
background-size: 2750px;
}
}
@keyframes slidein {
from {
background-position: top;
background-size: 3000px;
}
to {
background-position: -100px 0px;
background-size: 2750px;
}
}
#custom_title {
min-height: 3rem;
text-align: center;
}
.full-width {
width: 100%;
}
.full-width:hover {
background: rgba(75, 75, 250, 0.3);
color: white;
}
""") as demo:
with gr.Tab("Image"):
with gr.Row():
with gr.Column():
with gr.Group():
gr.Markdown("## Deepfake Detection", elem_id="custom_header")
input_image = gr.Image(label="Input Image", height=240)
btn = gr.Button(value="Submit", variant="primary", elem_classes="full-width")
with gr.Column():
with gr.Group():
gr.Markdown("## Result", elem_id="custom_header")
output_image = gr.Image(label="GradCAM Image", height=240)
label_probs = gr.Label()
gr.Examples(
examples=examples,
inputs=input_image,
outputs=[label_probs, output_image],
fn=predict_image,
cache_examples=True,
)
btn.click(predict_image, inputs=input_image, outputs=[label_probs, output_image], api_name="/predict_image")
with gr.Tab("Video"):
with gr.Row():
with gr.Column():
with gr.Group():
gr.Markdown("## Deepfake Detection", elem_id="custom_header")
input_video = gr.Video(label="Input Video", height=240)
btn_video = gr.Button(value="Submit", variant="primary", elem_classes="full-width")
with gr.Column():
with gr.Group():
gr.Markdown("## Result", elem_id="custom_header")
output_image_video = gr.Image(label="GradCAM", height=240)
label_probs_video = gr.Label()
gr.Examples(
examples=examples_videos,
inputs=input_video,
outputs=[label_probs_video, output_image_video],
fn=predict_video,
cache_examples=True,
)
btn_video.click(predict_video, inputs=input_video, outputs=[label_probs_video, output_image_video], api_name="/predict_video")
if __name__ == "__main__":
demo.launch() |