File size: 6,395 Bytes
ed84fba
 
 
 
 
 
 
 
 
 
 
 
 
 
d72b356
ed84fba
d72b356
ed84fba
d72b356
ed84fba
 
e9a64cd
ed84fba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d72b356
ed84fba
 
 
 
 
 
 
63adb58
ed84fba
63adb58
ed84fba
 
 
63adb58
ed84fba
 
 
d72b356
ed84fba
 
 
 
63adb58
ed84fba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63adb58
ed84fba
63adb58
ed84fba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9a64cd
ed84fba
e9a64cd
ed84fba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9a64cd
ed84fba
63adb58
ed84fba
 
 
 
d72b356
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import gradio as gr
import warnings
import cv2
import dlib
from pytorch_grad_cam.utils.image import show_cam_on_image
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
import numpy as np
import torch
from retinaface.pre_trained_models import get_model

from Scripts.model import create_cam, create_model
from Scripts.preprocess import crop_face, extract_face, extract_frames
from Scripts.ca_generator import get_augs

import spaces

warnings.filterwarnings('ignore')

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

sbcl = create_model("Weights/weights.tar")
sbcl.to(device) 

face_detector = get_model("resnet50_2020-07-20", max_size=1024, device=device)
face_detector.eval()

cam_sbcl = create_cam(sbcl)
targets = [ClassifierOutputTarget(1)]

# Examples
examples = ["Examples/Fake/Fake1.PNG", "Examples/Real/Real1.PNG", "Examples/Real/Real2.PNG", "Examples/Fake/Fake3.PNG",
            "Examples/Fake/Fake2.PNG", ]
examples_videos = ['Examples/Fake1.mp4', 'Examples/Real1.mp4']

# dlib Models
dlib_face_detector = dlib.get_frontal_face_detector()
dlib_face_predictor = dlib.shape_predictor(
    'Weights/shape_predictor_81_face_landmarks.dat')

@spaces.GPU
def predict_image(inp):
    face_list = extract_face(inp, face_detector)

    if len(face_list) == 0:
        return {'No face detected!': 1}, None

    with torch.no_grad():
        img = torch.tensor(face_list).to(device).float() / 255
        pred = sbcl(img).softmax(1)[:, 1].cpu().data.numpy().tolist()[0]
        confidences = {'Real': 1 - pred, 'Fake': pred}

    grayscale_cam = cam_sbcl(input_tensor=img, targets=targets, aug_smooth=True)
    grayscale_cam = grayscale_cam[0, :]
    cam_image = show_cam_on_image(face_list[0].transpose(1, 2, 0) / 255, grayscale_cam, use_rgb=True)

    return confidences, cam_image

@spaces.GPU
def predict_video(inp):
    face_list, idx_list = extract_frames(inp, 10, face_detector)

    with torch.no_grad():
        img = torch.tensor(face_list).to(device).float() / 255
        pred = sbcl(img).softmax(1)[:, 1]

    pred_list = []
    idx_img = -1
    for i in range(len(pred)):
        if idx_list[i] != idx_img:
            pred_list.append([])
            idx_img = idx_list[i]
        pred_list[-1].append(pred[i].item())
    pred_res = np.zeros(len(pred_list))
    for i in range(len(pred_res)):
        pred_res[i] = max(pred_list[i])
    pred = pred_res.mean()

    most_fake = np.argmax(pred_res)
    grayscale_cam = cam_sbcl(input_tensor=img[most_fake].unsqueeze(0), targets=targets, aug_smooth=True)
    grayscale_cam = grayscale_cam[0, :]
    cam_image = show_cam_on_image(face_list[most_fake].transpose(1, 2, 0) / 255, grayscale_cam, use_rgb=True)

    return {'Real': 1 - pred, 'Fake': pred}, cam_image

with gr.Blocks(title="Deepfake Detection CL", theme='upsatwal/mlsc_tiet', css="""
    @import url('https://fonts.googleapis.com/css?family=Source+Code+Pro:200');
    #custom_header {
        min-height: 3rem;
        background-image: url('https://static.pexels.com/photos/414171/pexels-photo-414171.jpeg');
        background-size: cover;
        background-position: top;
        color: white;
        text-align: center;
        padding: 0.5rem;
        font-family: 'Source Code Pro', monospace;
        text-transform: uppercase;
    }
    #custom_header:hover {
        -webkit-animation: slidein 10s;
        animation: slidein 10s;
        -webkit-animation-fill-mode: forwards;
        animation-fill-mode: forwards;
        -webkit-animation-iteration-count: infinite;
        animation-iteration-count: infinite;
        -webkit-animation-direction: alternate;
        animation-direction: alternate;
    }
    @-webkit-keyframes slidein {
        from {
            background-position: top;
            background-size: 3000px;
        }
        to {
            background-position: -100px 0px;
            background-size: 2750px;
        }
    }
    @keyframes slidein {
        from {
            background-position: top;
            background-size: 3000px;
        }
        to {
            background-position: -100px 0px;
            background-size: 2750px;
        }
    }
    #custom_title {
        min-height: 3rem;
        text-align: center;
    }
    .full-width {
        width: 100%;
    }
    .full-width:hover {
        background: rgba(75, 75, 250, 0.3);
        color: white;
    }
""") as demo:

    with gr.Tab("Image"):
        with gr.Row():
            with gr.Column():
                with gr.Group():
                    gr.Markdown("## Deepfake Detection", elem_id="custom_header")
                    input_image = gr.Image(label="Input Image", height=240)
                    btn = gr.Button(value="Submit", variant="primary", elem_classes="full-width")
            with gr.Column():
                with gr.Group():
                    gr.Markdown("## Result", elem_id="custom_header")
                    output_image = gr.Image(label="GradCAM Image", height=240)
                    label_probs = gr.Label()
        gr.Examples(
            examples=examples,
            inputs=input_image,
            outputs=[label_probs, output_image],
            fn=predict_image,
            cache_examples=True,
        )
        btn.click(predict_image, inputs=input_image, outputs=[label_probs, output_image], api_name="/predict_image")

    with gr.Tab("Video"):
        with gr.Row():
            with gr.Column():
                with gr.Group():
                    gr.Markdown("## Deepfake Detection", elem_id="custom_header")
                    input_video = gr.Video(label="Input Video", height=240)
                    btn_video = gr.Button(value="Submit", variant="primary", elem_classes="full-width")

            with gr.Column():
                with gr.Group():
                    gr.Markdown("## Result", elem_id="custom_header")
                    output_image_video = gr.Image(label="GradCAM", height=240)
                    label_probs_video = gr.Label()
        gr.Examples(
            examples=examples_videos,
            inputs=input_video,
            outputs=[label_probs_video, output_image_video],
            fn=predict_video,
            cache_examples=True,
        )
        btn_video.click(predict_video, inputs=input_video, outputs=[label_probs_video, output_image_video], api_name="/predict_video")

if __name__ == "__main__":
    demo.launch()