import numpy as np import cv2 from tqdm import tqdm def extract_frames(filename,num_frames,model,image_size=(380,380)): cap_org = cv2.VideoCapture(filename) if not cap_org.isOpened(): print(f'Cannot open: {filename}') # sys.exit() return [] croppedfaces=[] idx_list=[] frame_count_org = int(cap_org.get(cv2.CAP_PROP_FRAME_COUNT)) frame_idxs = np.linspace(0, frame_count_org - 1, num_frames, endpoint=True, dtype=int) for cnt_frame in range(frame_count_org): ret_org, frame_org = cap_org.read() height,width=frame_org.shape[:-1] if not ret_org: tqdm.write('Frame read {} Error! : {}'.format(cnt_frame,os.path.basename(filename))) break if cnt_frame not in frame_idxs: continue frame = cv2.cvtColor(frame_org, cv2.COLOR_BGR2RGB) faces = model.predict_jsons(frame) try: if len(faces)==0: tqdm.write('No faces in {}:{}'.format(cnt_frame,os.path.basename(filename))) continue size_list=[] croppedfaces_temp=[] idx_list_temp=[] for face_idx in range(len(faces)): x0,y0,x1,y1=faces[face_idx]['bbox'] bbox=np.array([[x0,y0],[x1,y1]]) croppedfaces_temp.append(cv2.resize(crop_face(frame,None,bbox,False,crop_by_bbox=True,only_img=True,phase='test'),dsize=image_size).transpose((2,0,1))) idx_list_temp.append(cnt_frame) size_list.append((x1-x0)*(y1-y0)) max_size=max(size_list) croppedfaces_temp=[f for face_idx,f in enumerate(croppedfaces_temp) if size_list[face_idx]>=max_size/2] idx_list_temp=[f for face_idx,f in enumerate(idx_list_temp) if size_list[face_idx]>=max_size/2] croppedfaces+=croppedfaces_temp idx_list+=idx_list_temp except Exception as e: print(f'error in {cnt_frame}:{filename}') print(e) continue cap_org.release() return croppedfaces,idx_list def extract_face(frame,model,image_size=(380,380)): faces = model.predict_jsons(frame) if len(faces[0]['bbox'])==0: return [] croppedfaces=[] for face_idx in range(len(faces)): x0,y0,x1,y1=faces[face_idx]['bbox'] bbox=np.array([[x0,y0],[x1,y1]]) croppedfaces.append(cv2.resize(crop_face(frame,None,bbox,False,crop_by_bbox=True,only_img=True,phase='test'),dsize=image_size).transpose((2,0,1))) return croppedfaces def crop_face(img,landmark=None,bbox=None,margin=False,crop_by_bbox=True,abs_coord=False,only_img=False,phase='train'): assert phase in ['train','val','test'] #crop face------------------------------------------ H,W=len(img),len(img[0]) assert landmark is not None or bbox is not None H,W=len(img),len(img[0]) if crop_by_bbox: x0,y0=bbox[0] x1,y1=bbox[1] w=x1-x0 h=y1-y0 w0_margin=w/4#0#np.random.rand()*(w/8) w1_margin=w/4 h0_margin=h/4#0#np.random.rand()*(h/5) h1_margin=h/4 else: x0,y0=landmark[:68,0].min(),landmark[:68,1].min() x1,y1=landmark[:68,0].max(),landmark[:68,1].max() w=x1-x0 h=y1-y0 w0_margin=w/8#0#np.random.rand()*(w/8) w1_margin=w/8 h0_margin=h/2#0#np.random.rand()*(h/5) h1_margin=h/5 if margin: w0_margin*=4 w1_margin*=4 h0_margin*=2 h1_margin*=2 elif phase=='train': w0_margin*=(np.random.rand()*0.6+0.2)#np.random.rand() w1_margin*=(np.random.rand()*0.6+0.2)#np.random.rand() h0_margin*=(np.random.rand()*0.6+0.2)#np.random.rand() h1_margin*=(np.random.rand()*0.6+0.2)#np.random.rand() else: w0_margin*=0.5 w1_margin*=0.5 h0_margin*=0.5 h1_margin*=0.5 y0_new=max(0,int(y0-h0_margin)) y1_new=min(H,int(y1+h1_margin)+1) x0_new=max(0,int(x0-w0_margin)) x1_new=min(W,int(x1+w1_margin)+1) img_cropped=img[y0_new:y1_new,x0_new:x1_new] if landmark is not None: landmark_cropped=np.zeros_like(landmark) for i,(p,q) in enumerate(landmark): landmark_cropped[i]=[p-x0_new,q-y0_new] else: landmark_cropped=None if bbox is not None: bbox_cropped=np.zeros_like(bbox) for i,(p,q) in enumerate(bbox): bbox_cropped[i]=[p-x0_new,q-y0_new] else: bbox_cropped=None if only_img: return img_cropped if abs_coord: return img_cropped,landmark_cropped,bbox_cropped,(y0-y0_new,x0-x0_new,y1_new-y1,x1_new-x1),y0_new,y1_new,x0_new,x1_new else: return img_cropped,landmark_cropped,bbox_cropped,(y0-y0_new,x0-x0_new,y1_new-y1,x1_new-x1)