Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -28,6 +28,30 @@ def script_to_use(model_id, api):
|
|
28 |
arch = arch[0]
|
29 |
return "convert.py" if arch in LLAMA_LIKE_ARCHS else "convert-hf-to-gguf.py"
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
def split_upload_model(model_path, repo_id, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None):
|
32 |
if oauth_token.token is None:
|
33 |
raise ValueError("You have to be logged in.")
|
@@ -68,11 +92,11 @@ def split_upload_model(model_path, repo_id, oauth_token: gr.OAuthToken | None, s
|
|
68 |
|
69 |
print("Sharded model has been uploaded successfully!")
|
70 |
|
71 |
-
def process_model(model_id, q_method, private_repo, split_model, split_max_tensors, split_max_size, oauth_token: gr.OAuthToken | None):
|
72 |
if oauth_token.token is None:
|
73 |
raise ValueError("You must be logged in to use GGUF-my-repo")
|
74 |
model_name = model_id.split('/')[-1]
|
75 |
-
fp16 = f"{model_name}.fp16.gguf"
|
76 |
|
77 |
try:
|
78 |
api = HfApi(token=oauth_token.token)
|
@@ -107,18 +131,60 @@ def process_model(model_id, q_method, private_repo, split_model, split_max_tenso
|
|
107 |
print("Model converted to fp16 successfully!")
|
108 |
print(f"Converted model path: {fp16}")
|
109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
username = whoami(oauth_token.token)["name"]
|
111 |
-
quantized_gguf_name = f"{model_name.lower()}-{q_method.lower()}.gguf"
|
112 |
-
quantized_gguf_path = quantized_gguf_name
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
if result.returncode != 0:
|
116 |
raise Exception(f"Error quantizing: {result.stderr}")
|
117 |
print(f"Quantized successfully with {q_method} option!")
|
118 |
print(f"Quantized model path: {quantized_gguf_path}")
|
119 |
|
120 |
# Create empty repo
|
121 |
-
new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-{q_method}-
|
122 |
new_repo_id = new_repo_url.repo_id
|
123 |
print("Repo created successfully!", new_repo_url)
|
124 |
|
@@ -173,6 +239,19 @@ def process_model(model_id, q_method, private_repo, split_model, split_max_tenso
|
|
173 |
except Exception as e:
|
174 |
raise Exception(f"Error uploading quantized model: {e}")
|
175 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
api.upload_file(
|
177 |
path_or_fileobj=f"README.md",
|
178 |
path_in_repo=f"README.md",
|
@@ -203,7 +282,7 @@ with gr.Blocks() as demo:
|
|
203 |
)
|
204 |
|
205 |
q_method_input = gr.Dropdown(
|
206 |
-
["
|
207 |
label="Quantization Method",
|
208 |
info="GGML quantization type",
|
209 |
value="Q4_K_M",
|
@@ -216,6 +295,11 @@ with gr.Blocks() as demo:
|
|
216 |
info="Create a private repo under your username."
|
217 |
)
|
218 |
|
|
|
|
|
|
|
|
|
|
|
219 |
split_model_input = gr.Checkbox(
|
220 |
value=False,
|
221 |
label="Split Model",
|
@@ -241,6 +325,7 @@ with gr.Blocks() as demo:
|
|
241 |
model_id_input,
|
242 |
q_method_input,
|
243 |
private_repo_input,
|
|
|
244 |
split_model_input,
|
245 |
split_max_tensors_input,
|
246 |
split_max_size_input,
|
@@ -258,16 +343,14 @@ with gr.Blocks() as demo:
|
|
258 |
|
259 |
split_model_input.change(
|
260 |
fn=update_visibility,
|
261 |
-
inputs=split_model_input,
|
262 |
-
|
263 |
-
)
|
264 |
-
|
265 |
-
def restart_space():
|
266 |
-
HfApi().restart_space(repo_id="ggml-org/gguf-my-repo", token=HF_TOKEN, factory_reboot=True)
|
267 |
|
268 |
scheduler = BackgroundScheduler()
|
269 |
scheduler.add_job(restart_space, "interval", seconds=21600)
|
270 |
scheduler.start()
|
271 |
|
272 |
-
#
|
273 |
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True)
|
|
|
28 |
arch = arch[0]
|
29 |
return "convert.py" if arch in LLAMA_LIKE_ARCHS else "convert-hf-to-gguf.py"
|
30 |
|
31 |
+
def generate_importance_matrix(model_path, train_data_path):
|
32 |
+
imatrix_command = f"./imatrix -m ../{model_path} -f {train_data_path} -ngl 0" #No GPU on the basic spaces unlike main, it works regardless but takes >2 hours
|
33 |
+
|
34 |
+
os.chdir("llama.cpp")
|
35 |
+
|
36 |
+
compile_command = "make"
|
37 |
+
compile_result = subprocess.run(compile_command, shell=True, capture_output=True, text=True)
|
38 |
+
if compile_result.returncode != 0:
|
39 |
+
raise Exception(f"Error compiling imatrix: {compile_result.stderr}")
|
40 |
+
|
41 |
+
print(f"Current working directory: {os.getcwd()}")
|
42 |
+
print(f"Files in the current directory: {os.listdir('.')}")
|
43 |
+
|
44 |
+
if not os.path.isfile(f"../{model_path}"):
|
45 |
+
raise Exception(f"Model file not found: {model_path}")
|
46 |
+
|
47 |
+
result = subprocess.run(imatrix_command, shell=True, capture_output=True, text=True)
|
48 |
+
|
49 |
+
os.chdir("..")
|
50 |
+
|
51 |
+
if result.returncode != 0:
|
52 |
+
raise Exception(f"Error generating importance matrix: {result.stderr}")
|
53 |
+
print("Importance matrix generated successfully!")
|
54 |
+
|
55 |
def split_upload_model(model_path, repo_id, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None):
|
56 |
if oauth_token.token is None:
|
57 |
raise ValueError("You have to be logged in.")
|
|
|
92 |
|
93 |
print("Sharded model has been uploaded successfully!")
|
94 |
|
95 |
+
def process_model(model_id, q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, oauth_token: gr.OAuthToken | None):
|
96 |
if oauth_token.token is None:
|
97 |
raise ValueError("You must be logged in to use GGUF-my-repo")
|
98 |
model_name = model_id.split('/')[-1]
|
99 |
+
fp16 = f"llama.cpp/{model_name}.fp16.gguf"
|
100 |
|
101 |
try:
|
102 |
api = HfApi(token=oauth_token.token)
|
|
|
131 |
print("Model converted to fp16 successfully!")
|
132 |
print(f"Converted model path: {fp16}")
|
133 |
|
134 |
+
imatrix_path = "llama.cpp/imatrix.dat"
|
135 |
+
use_imatrix = q_method.startswith("IQ")
|
136 |
+
|
137 |
+
if use_imatrix:
|
138 |
+
if train_data_file:
|
139 |
+
|
140 |
+
train_data_path = train_data_file.name
|
141 |
+
|
142 |
+
|
143 |
+
print(f"Training data file path: {train_data_path}")
|
144 |
+
|
145 |
+
|
146 |
+
if not os.path.isfile(train_data_path):
|
147 |
+
raise Exception(f"Training data file not found: {train_data_path}")
|
148 |
+
else:
|
149 |
+
# for now it's a decent fallback/default
|
150 |
+
train_data_path = "imatrix_calibration.txt"
|
151 |
+
|
152 |
+
|
153 |
+
print(f"Using fallback training data file: {train_data_path}")
|
154 |
+
|
155 |
+
|
156 |
+
if not os.path.isfile(train_data_path):
|
157 |
+
raise Exception(f"Fallback training data file not found: {train_data_path}")
|
158 |
+
|
159 |
+
generate_importance_matrix(fp16, train_data_path)
|
160 |
+
else:
|
161 |
+
print("Not using imatrix quantization. Skipping importance matrix generation.")
|
162 |
+
|
163 |
+
|
164 |
username = whoami(oauth_token.token)["name"]
|
165 |
+
quantized_gguf_name = f"{model_name.lower()}-{q_method.lower()}-imat.gguf"
|
166 |
+
quantized_gguf_path = f"llama.cpp/{quantized_gguf_name}"
|
167 |
+
if use_imatrix:
|
168 |
+
quantise_ggml = f"./llama.cpp/quantize --imatrix {imatrix_path} {fp16} {quantized_gguf_path} {q_method}"
|
169 |
+
else:
|
170 |
+
quantise_ggml = f"./llama.cpp/quantize {fp16} {quantized_gguf_path} {q_method}"
|
171 |
+
|
172 |
+
|
173 |
+
print(f"Quantization command: {quantise_ggml}")
|
174 |
+
|
175 |
+
result = subprocess.run(quantise_ggml, shell=True, capture_output=True, text=True)
|
176 |
+
|
177 |
+
|
178 |
+
print(f"Quantization command stdout: {result.stdout}")
|
179 |
+
print(f"Quantization command stderr: {result.stderr}")
|
180 |
+
|
181 |
if result.returncode != 0:
|
182 |
raise Exception(f"Error quantizing: {result.stderr}")
|
183 |
print(f"Quantized successfully with {q_method} option!")
|
184 |
print(f"Quantized model path: {quantized_gguf_path}")
|
185 |
|
186 |
# Create empty repo
|
187 |
+
new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-{q_method}-imat.gguf", exist_ok=True, private=private_repo)
|
188 |
new_repo_id = new_repo_url.repo_id
|
189 |
print("Repo created successfully!", new_repo_url)
|
190 |
|
|
|
239 |
except Exception as e:
|
240 |
raise Exception(f"Error uploading quantized model: {e}")
|
241 |
|
242 |
+
|
243 |
+
imatrix_path = "llama.cpp/imatrix.dat"
|
244 |
+
if os.path.isfile(imatrix_path):
|
245 |
+
try:
|
246 |
+
print(f"Uploading imatrix.dat: {imatrix_path}")
|
247 |
+
api.upload_file(
|
248 |
+
path_or_fileobj=imatrix_path,
|
249 |
+
path_in_repo="imatrix.dat",
|
250 |
+
repo_id=new_repo_id,
|
251 |
+
)
|
252 |
+
except Exception as e:
|
253 |
+
raise Exception(f"Error uploading imatrix.dat: {e}")
|
254 |
+
|
255 |
api.upload_file(
|
256 |
path_or_fileobj=f"README.md",
|
257 |
path_in_repo=f"README.md",
|
|
|
282 |
)
|
283 |
|
284 |
q_method_input = gr.Dropdown(
|
285 |
+
["IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S", "Q6_K", "Q8_0"],
|
286 |
label="Quantization Method",
|
287 |
info="GGML quantization type",
|
288 |
value="Q4_K_M",
|
|
|
295 |
info="Create a private repo under your username."
|
296 |
)
|
297 |
|
298 |
+
train_data_file_input = gr.File(
|
299 |
+
label="Training Data File",
|
300 |
+
file_types=["txt"]
|
301 |
+
)
|
302 |
+
|
303 |
split_model_input = gr.Checkbox(
|
304 |
value=False,
|
305 |
label="Split Model",
|
|
|
325 |
model_id_input,
|
326 |
q_method_input,
|
327 |
private_repo_input,
|
328 |
+
train_data_file_input,
|
329 |
split_model_input,
|
330 |
split_max_tensors_input,
|
331 |
split_max_size_input,
|
|
|
343 |
|
344 |
split_model_input.change(
|
345 |
fn=update_visibility,
|
346 |
+
inputs=split_model_input, outputs=[split_max_tensors_input, split_max_size_input]
|
347 |
+
)
|
348 |
+
def restart_space():
|
349 |
+
HfApi().restart_space(repo_id="ggml-org/gguf-my-repo", token=HF_TOKEN, factory_reboot=True)
|
|
|
|
|
350 |
|
351 |
scheduler = BackgroundScheduler()
|
352 |
scheduler.add_job(restart_space, "interval", seconds=21600)
|
353 |
scheduler.start()
|
354 |
|
355 |
+
#Launch the interface
|
356 |
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True)
|