Spaces:
Sleeping
Sleeping
File size: 31,452 Bytes
f8ab25d 638eb56 f8ab25d 638eb56 f8ab25d 136ada0 638eb56 136ada0 8776749 136ada0 2830d45 ba7f8df 4cdf9bf 136ada0 4cdf9bf 136ada0 2830d45 136ada0 8776749 136ada0 2830d45 136ada0 a2ed34a 136ada0 638eb56 136ada0 638eb56 f8ab25d 2830d45 ba7f8df 638eb56 a2ed34a 638eb56 2830d45 f8ab25d ba7f8df 2830d45 8776749 a2ed34a 8776749 2830d45 136ada0 f8ab25d 136ada0 638eb56 2830d45 2a243f7 2830d45 2a243f7 2830d45 2a243f7 2830d45 2a243f7 2830d45 2a243f7 2830d45 2a243f7 2830d45 2a243f7 2830d45 2a243f7 2830d45 a2ed34a 638eb56 136ada0 2830d45 ba7f8df 2830d45 ba7f8df 638eb56 ba7f8df 9e3c2c5 ba7f8df 638eb56 ba7f8df 638eb56 ba7f8df 638eb56 ba7f8df 638eb56 ba7f8df 638eb56 ba7f8df 4cdf9bf ba7f8df 8776749 4cdf9bf 8776749 2830d45 8776749 ba7f8df 8776749 2aa750a ba7f8df 2aa750a ba7f8df 2aa750a ba7f8df 2aa750a ba7f8df 2aa750a ba7f8df 2aa750a ba7f8df 2aa750a ba7f8df 2aa750a ba7f8df 2aa750a ba7f8df 8776749 03e6b4e 8776749 1d3a4de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 |
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import matplotlib.dates as mdates
import plotly.express as px
import plotly.graph_objects as go
import re
from datetime import datetime, timedelta
import warnings
import time
import dask.dataframe as dd
state_to_region = {
# WEST
'AK': 'WEST', 'CA': 'WEST', 'CO': 'WEST', 'HI': 'WEST', 'ID': 'WEST',
'MT': 'WEST', 'NV': 'WEST', 'OR': 'WEST', 'UT': 'WEST', 'WA': 'WEST', 'WY': 'WEST',
# SOUTHWEST
'AZ': 'SOUTHWEST', 'NM': 'SOUTHWEST', 'OK': 'SOUTHWEST', 'TX': 'SOUTHWEST',
# MIDWEST
'IL': 'MIDWEST', 'IN': 'MIDWEST', 'IA': 'MIDWEST', 'KS': 'MIDWEST', 'MI': 'MIDWEST',
'MN': 'MIDWEST', 'MO': 'MIDWEST', 'NE': 'MIDWEST', 'ND': 'MIDWEST', 'OH': 'MIDWEST',
'SD': 'MIDWEST', 'WI': 'MIDWEST',
# SOUTHEAST
'AL': 'SOUTHEAST', 'AR': 'SOUTHEAST', 'DE': 'SOUTHEAST', 'FL': 'SOUTHEAST',
'GA': 'SOUTHEAST', 'KY': 'SOUTHEAST', 'LA': 'SOUTHEAST', 'MD': 'SOUTHEAST',
'MS': 'SOUTHEAST', 'NC': 'SOUTHEAST', 'SC': 'SOUTHEAST', 'TN': 'SOUTHEAST',
'VA': 'SOUTHEAST', 'WV': 'SOUTHEAST',
# NORTHEAST
'CT': 'NORTHEAST', 'ME': 'NORTHEAST', 'MA': 'NORTHEAST', 'NH': 'NORTHEAST',
'NJ': 'NORTHEAST', 'NY': 'NORTHEAST', 'PA': 'NORTHEAST', 'RI': 'NORTHEAST',
'VT': 'NORTHEAST'
}
@st.cache_data
def date_from_week(year, week):
# Assuming the fiscal year starts in August and the week starts from August 1st
base_date = pd.to_datetime((year - 1).astype(str) + '-08-01')
dates = base_date + pd.to_timedelta((week - 1) * 7, unit='days')
return dates
@st.cache_data
def load_data(active_card):
# st.write(f"{active_card}")
# Define columns common to multiple cards if there are any
common_cols = ['FyWeek', 'Itemtype', 'Chaincode', 'State', 'SalesVolume', 'UnitPrice', 'Sales']
# Columns specific to cards
card_specific_cols = {
'card1': ['FyWeek', 'Fy', 'State','Store','Address','Zipcode','City','Itemtype', 'Chaincode', 'Containercode', 'SalesVolume', 'UnitPrice', 'Sales'],
# 'card2': ['FyWeek', 'Fy', 'State','Store','Address','Zipcode','City','Itemtype', 'Chaincode', 'Containercode', 'SalesVolume', 'UnitPrice', 'Sales'],
'card3': ['FyWeek', 'Fy', 'State','Store','Address','Zipcode','City','Itemtype', 'Chaincode', 'Containercode', 'SalesVolume', 'UnitPrice', 'Sales'] # Added for PE calculation card
}
# Choose columns based on the active card
required_columns = card_specific_cols.get(active_card, common_cols)
# Define the data types for efficient memory usage
dtype_spec = {
'FyWeek': 'string',
'Fy': 'category', # Add data type for 'Fy' if it's used
'Itemtype': 'category',
'Chaincode': 'category',
'State': 'category',
"Store": "category",
'Containercode': 'category',
"Address": "string",
"Zipcode": "float",
"City": "category",
'SalesVolume': 'float',
'UnitPrice': 'float',
'Sales': 'float'
}
# Read only the necessary columns
# st.write(required_columns)
ddf = dd.read_csv("fy21-24.csv", usecols=required_columns, dtype=dtype_spec)
df = ddf.compute()
# st.write("+++++++++++++++++++++++")
if active_card in ['card1','card2', 'card3',]:
df = df.groupby(['FyWeek', 'Fy', 'Chaincode', 'Store', 'Address', 'Zipcode', 'City', 'State', 'Containercode', 'Itemtype'], observed=True).agg({
'SalesVolume': 'sum',
'UnitPrice': 'mean',
'Sales': 'sum'
}).reset_index()
df[['FY', 'Week']] = df['FyWeek'].str.split(' Week ', expand=True)
df['Week'] = df['Week'].astype(int) # Convert 'Week' to int
df['Year'] = df['FY'].str[2:].astype(int) # Extract year part and convert to int
df['Dt'] = date_from_week(df['Year'], df['Week'])
# Add the region column based on state
df['Region'] = df['State'].map(state_to_region)
return df
# Display logo
st.image("bonnie.png", width=150) # Adjust width as needed
# Display title
# st.title("Price vs. Sales Volume Tracker Dashboard")
# Initialize session state for storing which card was clicked and item type
if 'active_card' not in st.session_state:
st.session_state['active_card'] = None
if 'selected_item_type' not in st.session_state:
st.session_state['selected_item_type'] = 'CORE' # Set default to 'CORE'
if 'selected_feature' not in st.session_state:
st.session_state['selected_feature'] = 'Chaincode' # Default to 'Chain Code'
# Card selection buttons with logic to reset session state on switch
col1, col3 = st.columns(2)
with col1:
if st.button("Sales Volume Trend"):
st.session_state['active_card'] = 'card1'
# Reset other selections when switching cards
st.session_state['selected_state'] = None
st.session_state['selected_chaincode'] = None
st.session_state['selected_itemtype'] = None
st.session_state['selected_containercode'] = None
# with col2:
# if st.button("Sales Volume vs Median Unit Price Trend"):
# st.session_state['active_card'] = 'card2'
# # Reset selections when switching cards
# st.session_state['selected_state'] = None
# st.session_state['selected_chaincode'] = None
# st.session_state['selected_itemtype'] = None
# st.session_state['selected_containercode'] = None
with col3:
if st.button("Price Elasticity Coefficient Trend YoY"):
st.session_state['active_card'] = 'card3'
# Reset selections when switching cards
st.session_state['selected_state'] = None
st.session_state['selected_chaincode'] = None
st.session_state['selected_itemtype'] = None
st.session_state['selected_containercode'] = None
# Load data for the current card
start_time = time.time()
df = load_data(st.session_state['active_card'])
time_taken = time.time() - start_time
st.write(f"Data loaded in {time_taken:.2f} seconds")
############################################ CARD #1 ####################################################
if st.session_state['active_card'] == 'card1':
# Step 1: Sales Volume vs FyWeek for the whole dataset (no filter)
st.subheader("Total Sales Volume by Fiscal Week")
df['FY_Week'] = df['FY'].astype(str) + '_' + df['Week'].astype(str)
# Split FY_Week again for correct sorting
if not df.empty and 'FY_Week' in df.columns:
total_sales_df = df.groupby('FY_Week', observed=True)['SalesVolume'].sum().reset_index()
total_sales_df[['FY', 'Week']] = total_sales_df['FY_Week'].str.split('_', expand=True)
total_sales_df['Week'] = total_sales_df['Week'].astype(int)
total_sales_df = total_sales_df.sort_values(by=['FY', 'Week'])
# Create a line chart using Plotly
fig = px.line(total_sales_df, x='FY_Week', y='SalesVolume',
labels={'SalesVolume': 'Sales Volume', 'FY_Week': 'Fiscal Week'})
st.plotly_chart(fig)
# Step 2: Top 3 states based on sales volume as buttons/cards
top_states = df.groupby('State', observed=True)['SalesVolume'].sum().nlargest(3).index
st.write("### Top 3 Selling States in the last 4 years (drill down by state)")
col1, col2, col3 = st.columns(3)
if len(top_states) > 0 and col1.button(top_states[0]):
st.session_state['selected_state'] = top_states[0]
if len(top_states) > 1 and col2.button(top_states[1]):
st.session_state['selected_state'] = top_states[1]
if len(top_states) > 2 and col3.button(top_states[2]):
st.session_state['selected_state'] = top_states[2]
# If a state is selected, show the corresponding plot
if 'selected_state' in st.session_state and st.session_state['selected_state']:
selected_state = st.session_state['selected_state']
# Step 3: Sales volume vs FyWeek for the selected state
st.subheader(f"Sales Volume by Fiscal Week for {selected_state} (drill down by Chaincode) ")
state_sales_df = df[df['State'] == selected_state].groupby('FY_Week', observed=True)['SalesVolume'].sum().reset_index()
if not state_sales_df.empty and 'FY_Week' in state_sales_df.columns:
state_sales_df[['FY', 'Week']] = state_sales_df['FY_Week'].str.split('_', expand=True)
state_sales_df['Week'] = state_sales_df['Week'].astype(int)
state_sales_df = state_sales_df.sort_values(by=['FY', 'Week'])
fig = px.line(state_sales_df, x='FY_Week', y='SalesVolume',
labels={'SalesVolume': 'Sales Volume', 'FY_Week': 'Fiscal Week'})
st.plotly_chart(fig)
# Step 4: Top 3 chaincodes based on sales volume as buttons/cards
top_chaincodes = df[df['State'] == selected_state].groupby('Chaincode', observed=True)['SalesVolume'].sum().nlargest(3).index
st.write(f"### Top 3 selling Chaincode in {selected_state}:")
# Add a check to ensure top_chaincodes has values before accessing
col1, col2, col3 = st.columns(3)
if len(top_chaincodes) > 0 and col1.button(top_chaincodes[0]):
st.session_state['selected_chaincode'] = top_chaincodes[0]
if len(top_chaincodes) > 1 and col2.button(top_chaincodes[1]):
st.session_state['selected_chaincode'] = top_chaincodes[1]
if len(top_chaincodes) > 2 and col3.button(top_chaincodes[2]):
st.session_state['selected_chaincode'] = top_chaincodes[2]
# If a chaincode is selected, show the corresponding plot
if 'selected_chaincode' in st.session_state:
selected_chaincode = st.session_state['selected_chaincode']
# Step 5: Sales volume vs FyWeek for the selected chaincode in the selected state
st.subheader(f"Sales Volume by Fiscal Week for {selected_chaincode} in {selected_state}")
chain_sales_df = df[(df['State'] == selected_state) & (df['Chaincode'] == selected_chaincode)].groupby('FY_Week', observed=True)['SalesVolume'].sum().reset_index()
if not chain_sales_df.empty and 'FY_Week' in chain_sales_df.columns:
chain_sales_df[['FY', 'Week']] = chain_sales_df['FY_Week'].str.split('_', expand=True)
chain_sales_df['Week'] = chain_sales_df['Week'].astype(int)
chain_sales_df = chain_sales_df.sort_values(by=['FY', 'Week'])
fig = px.line(chain_sales_df, x='FY_Week', y='SalesVolume',
# title=f'Sales Volume vs Fiscal Week in {selected_chaincode}, {selected_state}',
labels={'SalesVolume': 'Sales Volume', 'FY_Week': 'Fiscal Week'})
st.plotly_chart(fig)
# Step 6: Top 3 itemtypes based on sales volume as buttons/cards
top_itemtypes = df[(df['State'] == selected_state) & (df['Chaincode'] == selected_chaincode)].groupby('Itemtype', observed=True)['SalesVolume'].sum().nlargest(3).index
st.write(f"### Top Item Type in {selected_chaincode}, {selected_state} (drill down by ItemType) :")
col1, col2, col3 = st.columns(3)
if len(top_itemtypes) > 0 and col1.button(top_itemtypes[0]):
st.session_state['selected_itemtype'] = top_itemtypes[0]
if len(top_itemtypes) > 1 and col2.button(top_itemtypes[1]):
st.session_state['selected_itemtype'] = top_itemtypes[1]
if len(top_itemtypes) > 2 and col3.button(top_itemtypes[2]):
st.session_state['selected_itemtype'] = top_itemtypes[2]
# If an itemtype is selected, show the corresponding dual-axis plot for Sales Volume & Unit Price
if 'selected_itemtype' in st.session_state:
selected_itemtype = st.session_state['selected_itemtype']
# Step 7: Dual-axis plot for Sales volume and UnitPrice vs FyWeek for the selected itemtype
# st.subheader(f"Sales Volume & Unit Price vs Fiscal Week for {selected_itemtype} in {selected_chaincode}, {selected_state}")
item_sales_df = df[(df['State'] == selected_state) & (df['Chaincode'] == selected_chaincode) & (df['Itemtype'] == selected_itemtype)].groupby('FY_Week', observed=True).agg({
'SalesVolume': 'sum',
'UnitPrice': 'mean'
}).reset_index()
if not item_sales_df.empty and 'FY_Week' in item_sales_df.columns:
item_sales_df[['FY', 'Week']] = item_sales_df['FY_Week'].str.split('_', expand=True)
item_sales_df['Week'] = item_sales_df['Week'].astype(int)
item_sales_df = item_sales_df.sort_values(by=['FY', 'Week'])
# Dual-axis plot using Plotly Graph Objects
fig = go.Figure()
# Add SalesVolume trace
fig.add_trace(go.Scatter(
x=item_sales_df['FY_Week'],
y=item_sales_df['SalesVolume'],
mode='lines+markers',
name='SalesVolume',
line=dict(color='blue'),
hovertemplate='SalesVolume: %{y}<br>Week-Year: %{x}'
))
# Add UnitPrice trace with secondary Y-axis
fig.add_trace(go.Scatter(
x=item_sales_df['FY_Week'],
y=item_sales_df['UnitPrice'],
mode='lines+markers',
name='UnitPrice',
line=dict(color='green'),
yaxis='y2',
hovertemplate='UnitPrice: %{y}<br>Week-Year: %{x}'
))
# Update layout for dual axes
fig.update_layout(
title=f"Sales Volume vs Unit Price by Fiscal Week for {selected_itemtype}, {selected_chaincode}, {selected_state}",
xaxis_title='Fiscal Week',
yaxis_title='Sales Volume',
yaxis2=dict(title='Unit Price', overlaying='y', side='right'),
legend=dict(x=0.9, y=1.15),
hovermode="x unified", # Show both values in a tooltip
height=600,
margin=dict(l=50, r=50, t=50, b=50)
)
# Rotate X-axis labels
fig.update_xaxes(tickangle=90)
# Display the Plotly figure in Streamlit
st.plotly_chart(fig, use_container_width=True)
# Step 8: Display Top/Bottom Container Codes and Stores
st.subheader("Top & Bottom 3 Container Codes and Stores")
# Get top and bottom 3 container codes based on SalesVolume
top_containercodes = df[(df['State'] == selected_state) & (df['Chaincode'] == selected_chaincode) & (df['Itemtype'] == selected_itemtype)].groupby('Containercode', observed=True)['SalesVolume'].sum().nlargest(3).reset_index()
bottom_containercodes = df[(df['State'] == selected_state) & (df['Chaincode'] == selected_chaincode) & (df['Itemtype'] == selected_itemtype)].groupby('Containercode', observed=True)['SalesVolume'].sum().nsmallest(3).reset_index()
# Get top and bottom 3 stores based on SalesVolume
top_stores = df[(df['State'] == selected_state) & (df['Chaincode'] == selected_chaincode) & (df['Itemtype'] == selected_itemtype)].groupby('Store', observed=True)['SalesVolume'].sum().nlargest(3).reset_index()
bottom_stores = df[(df['State'] == selected_state) & (df['Chaincode'] == selected_chaincode) & (df['Itemtype'] == selected_itemtype)].groupby('Store', observed=True)['SalesVolume'].sum().nsmallest(3).reset_index()
# Display top and bottom container codes side by side
st.write("### Container Codes:")
col1, col2 = st.columns(2)
with col1:
st.write("#### Top 3 Container Codes")
st.dataframe(top_containercodes)
with col2:
st.write("#### Bottom 3 Container Codes")
st.dataframe(bottom_containercodes)
# Display top and bottom stores side by side
st.write("### Stores:")
col3, col4 = st.columns(2)
with col3:
st.write("#### Top 3 Stores")
st.dataframe(top_stores)
with col4:
st.write("#### Bottom 3 Stores")
st.dataframe(bottom_stores)
##########################################################################################################
########################################### CARD #2 ####################################################
# if st.session_state['active_card'] == 'card2':
# # Identify the top 10 Itemtypes based on total SalesVolume
# top_10_itemtypes = df.groupby('Itemtype')['SalesVolume'].sum().nlargest(10).index
# # Filter the DataFrame to include only the top 10 Itemtypes
# df = df[df['Itemtype'].isin(top_10_itemtypes)]
# # Dropdown to select item type (using session_state)
# st.session_state['selected_item_type'] = st.selectbox(
# 'Select Item Type', df['Itemtype'].unique(),
# index=list(df['Itemtype'].unique()).index(st.session_state['selected_item_type']))
# # Dropdown to select the grouping category (container code, chain code, or state)
# group_by_option = st.selectbox('Group by', ['Containercode', 'Chaincode', 'State','Region'])
# # Multi-select checkbox to select multiple years
# selected_years = st.multiselect('Select Year(s)', [2021, 2022, 2023, 2024], default=[2021])
# st.subheader(f"Sales Volume & Unit Price Correlation for {group_by_option} in {', '.join(map(str, selected_years))}")
# # Convert 'Dt' column to datetime
# df['Dt'] = pd.to_datetime(df['Dt'], errors='coerce')
# df['Promo'] = np.where(df['Dt'].dt.month.astype(str).isin(['3', '4', '5', '6']), 'Promo', 'NoPromo')
# df["Promo"] = df["Promo"].astype("category")
# # Filter the dataframe based on the selected item type and selected years
# filtered_df = df[(df['Itemtype'] == st.session_state['selected_item_type']) & (df['Dt'].dt.year.isin(selected_years))]
# # Find the top 3 values based on total SalesVolume in the selected grouping category
# top_3_values = filtered_df.groupby(group_by_option, observed=True)['SalesVolume'].sum().nlargest(3).index
# # Filter the data for only the top 3 values
# top_group_data = filtered_df[filtered_df[group_by_option].isin(top_3_values)]
# # Aggregate data
# agg_df = top_group_data.groupby([group_by_option, 'Year', 'Week', 'Dt'], observed=True).agg({
# 'SalesVolume': 'sum',
# 'UnitPrice': 'mean'
# }).reset_index()
# # Create a new column 'week-year' for X-axis labels
# agg_df['week-year'] = agg_df['Dt'].dt.strftime('%U-%Y')
# # Loop through the top 3 values and create separate plots using Plotly
# for value in top_3_values:
# value_data = agg_df[agg_df[group_by_option] == value]
# # Assuming you have 'value_data' from your previous code
# mean_sales_volume = value_data['SalesVolume'].mean()
# mean_unit_price = value_data['UnitPrice'].mean()
# # Create a Plotly figure
# fig = go.Figure()
# # Add SalesVolume trace
# fig.add_trace(go.Scatter(
# x=value_data['week-year'],
# y=value_data['SalesVolume'],
# mode='lines+markers',
# name='SalesVolume',
# line=dict(color='blue'),
# hovertemplate='SalesVolume: %{y}<br>Week-Year: %{x}'
# ))
# # Add UnitPrice trace on a secondary Y-axis
# fig.add_trace(go.Scatter(
# x=value_data['week-year'],
# y=value_data['UnitPrice'],
# mode='lines+markers',
# name='UnitPrice',
# line=dict(color='green'),
# yaxis='y2',
# hovertemplate='UnitPrice: %{y}<br>Week-Year: %{x}'
# ))
# # Add mean line for SalesVolume
# fig.add_shape(type="line",
# x0=value_data['week-year'].min(), x1=value_data['week-year'].max(),
# y0=mean_sales_volume, y1=mean_sales_volume,
# line=dict(color="blue", width=2, dash="dash"),
# xref='x', yref='y')
# # Add mean line for UnitPrice (on secondary Y-axis)
# fig.add_shape(type="line",
# x0=value_data['week-year'].min(), x1=value_data['week-year'].max(),
# y0=mean_unit_price, y1=mean_unit_price,
# line=dict(color="green", width=2, dash="dash"),
# xref='x', yref='y2')
# # Update layout for dual axes
# fig.update_layout(
# template='plotly_white',
# title=f"SalesVolume and UnitPrice - {value} ({group_by_option})",
# xaxis_title='Week-Year',
# yaxis_title='Sales Volume',
# yaxis2=dict(title='UnitPrice', overlaying='y', side='right'),
# legend=dict(x=0.9, y=1.15),
# hovermode="x unified", # Show both values in a tooltip
# height=600,
# margin=dict(l=50, r=50, t=50, b=50)
# )
# # Rotate X-axis labels
# fig.update_xaxes(tickangle=90)
# # Display the Plotly figure in Streamlit
# st.plotly_chart(fig, use_container_width=True)
################################
if st.session_state['active_card'] == 'card3':
# Dropdown for selecting the item type
item_type_options = df['Itemtype'].unique()
selected_item_type = st.selectbox("Select Item Type", item_type_options)
# Dropdown for selecting the region (multiple selection allowed)
region_options = df['Region'].dropna().unique()
selected_regions = st.multiselect("Select Region(s)", region_options, default=region_options)
# Filter data based on selected item type and selected regions
filtered_df = df[(df['Itemtype'] == selected_item_type) & (df['Region'].isin(selected_regions))]
# Group by Year, Region, Itemtype and Promo, and aggregate SalesVolume and UnitPrice
agg_df = filtered_df.groupby(['Fy', 'Region', 'Itemtype',]).agg({
'SalesVolume': 'sum',
'UnitPrice': 'mean'
}).reset_index()
# Sort values by Region, Itemtype, Fy, and Promo for YOY calculation
agg_df = agg_df.sort_values(by=['Region', 'Itemtype', 'Fy',])
# Calculate YOY percentage changes in Sales Volume and Unit Price
agg_df['SalesVolume_pct_change'] = agg_df.groupby(['Region', 'Itemtype',])['SalesVolume'].pct_change().round(3) * 100
agg_df['UnitPrice_pct_change'] = agg_df.groupby(['Region', 'Itemtype', ])['UnitPrice'].pct_change().round(3) * 100
# Calculate Price Elasticity Coefficient (PE)
agg_df['PE_Coeff'] = (agg_df['SalesVolume_pct_change'] / agg_df['UnitPrice_pct_change']).round(2)
# Exclude FY 2025 but keep FY 2021 even with NaN values
agg_df_filtered = agg_df[agg_df['Fy'] != 'FY 2025']
# Drop rows where PE_Coeff is NaN (optional)
agg_df_filtered = agg_df_filtered.dropna(subset=['PE_Coeff'])
agg_df_filtered = agg_df_filtered.rename(columns={
'SalesVolume_pct_change': 'SlVol%change',
'UnitPrice_pct_change': 'UnPr%change',
})
agg_df_filtered = agg_df_filtered.reset_index(drop=True)
st.dataframe(agg_df_filtered)
st.write(agg_df_filtered.shape)
# Extract values for the current and previous years from row 1 and row 2 of the dataframe
current_year_row = agg_df_filtered.iloc[1] # Row 1 - Current Year
previous_year_row = agg_df_filtered.iloc[0] # Row 2 - Previous Year
# Extract values for Unit Price and Sales Volume
unit_price_current_year = current_year_row['UnitPrice']
unit_price_previous_year = previous_year_row['UnitPrice']
sales_volume_current_year = current_year_row['SalesVolume']
sales_volume_previous_year = previous_year_row['SalesVolume']
# Calculate percentage changes for Unit Price and Sales Volume
unit_price_pct = ((unit_price_current_year - unit_price_previous_year) / unit_price_previous_year) * 100
sales_volume_pct = ((sales_volume_current_year - sales_volume_previous_year) / sales_volume_previous_year) * 100
# Calculate PE Coefficient
pe_coeff = sales_volume_pct / unit_price_pct
st.markdown(f'''### Calculations for Price Elasticity Coefficient''')
st.latex(rf"""
\text{{Unit Price \% Change}} = \frac{{{unit_price_current_year:.2f} - {unit_price_previous_year:.2f}}}{{{unit_price_previous_year:.2f}}} \times 100 = {unit_price_pct:.2f}\%
""")
# Sales Volume % Change
st.latex(rf"""
\text{{Sales Volume \% Change}} = \frac{{{sales_volume_current_year:.2f} - {sales_volume_previous_year:.2f}}}{{{sales_volume_previous_year:.2f}}} \times 100 = {sales_volume_pct:.2f}\%
""")
# PE Coefficient
st.latex(rf"""
\text{{PE Coefficient}} = \frac{{{sales_volume_pct:.2f}}}{{{unit_price_pct:.2f}}} = {pe_coeff:.2f}
""")
# Explanation for PE Coefficient Conditions
st.markdown(f"""
### Interpretation of Price Elasticity (PE) Coefficient:
The Price Elasticity (PE) coefficient reflects how sensitive sales volume is to changes in unit price.
- If the **PE coefficient is positive**:
1. When the price increases, sales volume increases.
2. When the price decreases, sales volume decreases.
- If the **PE coefficient is negative**:
1. When the price increases, sales volume decreases.
2. When the price decreases, sales volume increases.
""")
# Dynamic analysis based on the calculated PE coefficient and signs of changes
if unit_price_pct > 0 and sales_volume_pct > 0:
st.warning(f"""
Both unit price and sales volume increased (refer first and second row of the table). The PE coefficient of **{pe_coeff:.2f}** indicates that for every 1% increase in unit price, sales volume increased by approximately **{pe_coeff:.2f}%**.
""")
elif unit_price_pct < 0 and sales_volume_pct < 0:
st.warning(f"""
Both unit price and sales volume decreased (refer first and second row of the table). The PE coefficient of **{pe_coeff:.2f}** suggests that for every 1% decrease in unit price, sales volume decreased by approximately **{pe_coeff:.2f}%**.
""")
elif unit_price_pct > 0 and sales_volume_pct < 0:
st.warning(f"""
The unit price increased while sales volume decreased (refer first and second row of the table). The negative PE coefficient of **{pe_coeff:.2f}** means that for every 1% increase in unit price, sales volume fell by approximately **{abs(pe_coeff):.2f}%**.
""")
elif unit_price_pct < 0 and sales_volume_pct > 0:
st.warning(f"""
The unit price decreased while sales volume increased (refer first and second row of the table). The negative PE coefficient of **{pe_coeff:.2f}** implies that for every 1% decrease in unit price, sales volume increased by approximately **{abs(pe_coeff):.2f}%**.
""")
# Plot the PE Coefficient with Plotly
fig = px.line(
agg_df_filtered,
x='Fy',
y='PE_Coeff', # Differentiate between Promo and NoPromo
color='Region', # Differentiate lines by Region
title=f"Price Elasticity Coefficient (PE) by Year for {selected_item_type}",
labels={'Fy': 'Fiscal Year', 'PE_Coeff': 'Price Elasticity Coefficient'},
markers=True
)
# Customize layout and show plot
fig.update_layout(
height=600,
width=1000,
)
st.plotly_chart(fig, use_container_width=True)
#################### CARD-3 MONTHLY IMPLEMENTATION #########################
# Ensure 'Dt' column is in datetime format
df['Dt'] = pd.to_datetime(df['Dt'])
# Extract fiscal year and month from 'Dt' column
df['FY'] = df['Dt'].dt.year.astype(str)
df['Month'] = df['Dt'].dt.month.astype(str)
# Create FY_Month column
df['FY_Month'] = df['FY'] + '_' + df['Month']
# Filter data based on selected item type and selected regions
filtered_df = df[(df['Itemtype'] == selected_item_type) & (df['Region'].isin(selected_regions))]
# Group by Year, Region, Itemtype and aggregate SalesVolume and UnitPrice
agg_df = filtered_df.groupby(['FY_Month', 'Region', 'Itemtype']).agg({
'SalesVolume': 'sum',
'UnitPrice': 'mean'
}).reset_index()
# Split FY_Month again for correct sorting
agg_df[['FY', 'Month']] = agg_df['FY_Month'].str.split('_', expand=True)
agg_df['Month'] = agg_df['Month'].astype(int)
agg_df['FY'] = agg_df['FY'].astype(int)
# Combine FY and Month back into a datetime-like format for proper sorting
agg_df['FY_Month_dt'] = pd.to_datetime(agg_df['FY'].astype(str) + agg_df['Month'].astype(str).str.zfill(2), format='%Y%m')
# Sort values by Region, Itemtype, and FY_Month_dt
agg_df = agg_df.sort_values(by=['Region', 'Itemtype', 'FY_Month_dt'])
# Calculate YOY percentage changes in Sales Volume and Unit Price
agg_df['SalesVolume_pct_change'] = agg_df.groupby(['Region', 'Itemtype'])['SalesVolume'].pct_change().round(3) * 100
agg_df['UnitPrice_pct_change'] = agg_df.groupby(['Region', 'Itemtype'])['UnitPrice'].pct_change().round(3) * 100
# Calculate Price Elasticity Coefficient (PE)
agg_df['PE_Coeff'] = (agg_df['SalesVolume_pct_change'] / agg_df['UnitPrice_pct_change']).round(2)
# Exclude FY 2021 and FY 2025
agg_df_filtered = agg_df[~agg_df['FY'].astype(str).str.contains('2020|2021|2025')]
# Drop rows where PE_Coeff is NaN (optional)
agg_df_filtered = agg_df_filtered.dropna(subset=['PE_Coeff'])
agg_df_filtered = agg_df_filtered[(agg_df_filtered['PE_Coeff'] < 1000) & (agg_df_filtered['PE_Coeff'] > -1000)]
# Plot the PE Coefficient with Plotly
fig = go.Figure()
# Iterate through each selected region and plot separately
for region in selected_regions:
# Filter the DataFrame for the current region
region_df = agg_df_filtered[agg_df_filtered['Region'] == region]
# Add a line trace for the region
fig.add_trace(go.Scatter(
x=region_df['FY_Month_dt'], # Use the datetime-like column for correct sorting
y=region_df['PE_Coeff'],
mode='lines+markers',
name=region, # Set the name to the region to appear in the legend
line=dict(width=2),
marker=dict(size=6),
))
# Customize layout
fig.update_layout(
title=f"Price Elasticity Coefficient (PE) by Year-Month for {selected_item_type}",
xaxis_title="Fiscal Year_Month",
yaxis_title="Price Elasticity Coefficient (PE)",
height=600,
width=1000,
legend_title="Region",
xaxis=dict(
tickformat='%Y-%m', # Format X-axis ticks as Year-Month
)
)
# Show the plot in Streamlit
st.plotly_chart(fig, use_container_width=True)
|