File size: 31,452 Bytes
f8ab25d
 
638eb56
f8ab25d
638eb56
 
f8ab25d
136ada0
638eb56
 
 
136ada0
 
8776749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
136ada0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2830d45
ba7f8df
4cdf9bf
136ada0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cdf9bf
136ada0
2830d45
136ada0
 
 
 
 
 
 
 
 
8776749
 
 
136ada0
2830d45
136ada0
 
 
 
a2ed34a
136ada0
 
 
638eb56
 
 
 
136ada0
638eb56
 
f8ab25d
2830d45
ba7f8df
638eb56
a2ed34a
638eb56
2830d45
 
 
 
 
f8ab25d
ba7f8df
 
 
 
 
 
 
 
2830d45
8776749
a2ed34a
8776749
2830d45
 
 
 
 
 
 
 
136ada0
 
 
f8ab25d
 
136ada0
638eb56
2830d45
2a243f7
2830d45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a243f7
2830d45
 
 
 
 
 
 
 
 
 
 
 
 
2a243f7
2830d45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a243f7
2830d45
 
 
 
 
 
 
 
2a243f7
2830d45
 
 
 
 
2a243f7
2830d45
 
 
 
 
 
 
 
 
 
 
 
 
 
2a243f7
2830d45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a243f7
2830d45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2ed34a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
638eb56
 
136ada0
2830d45
ba7f8df
 
 
2830d45
ba7f8df
 
 
 
 
 
638eb56
ba7f8df
 
9e3c2c5
ba7f8df
 
638eb56
ba7f8df
638eb56
ba7f8df
 
 
 
638eb56
ba7f8df
 
638eb56
ba7f8df
 
638eb56
ba7f8df
 
4cdf9bf
ba7f8df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8776749
4cdf9bf
8776749
 
 
 
 
 
2830d45
8776749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba7f8df
 
 
 
 
8776749
 
2aa750a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba7f8df
2aa750a
ba7f8df
2aa750a
 
ba7f8df
2aa750a
ba7f8df
2aa750a
 
ba7f8df
2aa750a
ba7f8df
2aa750a
ba7f8df
 
2aa750a
ba7f8df
 
 
 
 
 
 
 
 
 
 
2aa750a
ba7f8df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8776749
 
 
 
 
03e6b4e
8776749
 
 
 
 
 
 
 
 
 
 
 
1d3a4de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import matplotlib.dates as mdates
import plotly.express as px
import plotly.graph_objects as go
import re
from datetime import datetime, timedelta
import warnings
import time
import dask.dataframe as dd
state_to_region = {
    # WEST
    'AK': 'WEST', 'CA': 'WEST', 'CO': 'WEST', 'HI': 'WEST', 'ID': 'WEST', 
    'MT': 'WEST', 'NV': 'WEST', 'OR': 'WEST', 'UT': 'WEST', 'WA': 'WEST', 'WY': 'WEST',
    
    # SOUTHWEST
    'AZ': 'SOUTHWEST', 'NM': 'SOUTHWEST', 'OK': 'SOUTHWEST', 'TX': 'SOUTHWEST',
    
    # MIDWEST
    'IL': 'MIDWEST', 'IN': 'MIDWEST', 'IA': 'MIDWEST', 'KS': 'MIDWEST', 'MI': 'MIDWEST',
    'MN': 'MIDWEST', 'MO': 'MIDWEST', 'NE': 'MIDWEST', 'ND': 'MIDWEST', 'OH': 'MIDWEST', 
    'SD': 'MIDWEST', 'WI': 'MIDWEST',
    
    # SOUTHEAST
    'AL': 'SOUTHEAST', 'AR': 'SOUTHEAST', 'DE': 'SOUTHEAST', 'FL': 'SOUTHEAST', 
    'GA': 'SOUTHEAST', 'KY': 'SOUTHEAST', 'LA': 'SOUTHEAST', 'MD': 'SOUTHEAST', 
    'MS': 'SOUTHEAST', 'NC': 'SOUTHEAST', 'SC': 'SOUTHEAST', 'TN': 'SOUTHEAST', 
    'VA': 'SOUTHEAST', 'WV': 'SOUTHEAST',
    
    # NORTHEAST
    'CT': 'NORTHEAST', 'ME': 'NORTHEAST', 'MA': 'NORTHEAST', 'NH': 'NORTHEAST', 
    'NJ': 'NORTHEAST', 'NY': 'NORTHEAST', 'PA': 'NORTHEAST', 'RI': 'NORTHEAST', 
    'VT': 'NORTHEAST'
}
@st.cache_data
def date_from_week(year, week):
    # Assuming the fiscal year starts in August and the week starts from August 1st
    base_date = pd.to_datetime((year - 1).astype(str) + '-08-01')
    dates = base_date + pd.to_timedelta((week - 1) * 7, unit='days')
    return dates

@st.cache_data
def load_data(active_card):
    # st.write(f"{active_card}")
    # Define columns common to multiple cards if there are any
    common_cols = ['FyWeek', 'Itemtype', 'Chaincode', 'State', 'SalesVolume', 'UnitPrice', 'Sales']

    # Columns specific to cards
    card_specific_cols = {
        'card1': ['FyWeek', 'Fy', 'State','Store','Address','Zipcode','City','Itemtype', 'Chaincode', 'Containercode', 'SalesVolume', 'UnitPrice', 'Sales'],
        # 'card2': ['FyWeek', 'Fy', 'State','Store','Address','Zipcode','City','Itemtype', 'Chaincode', 'Containercode', 'SalesVolume', 'UnitPrice', 'Sales'],
        'card3': ['FyWeek', 'Fy', 'State','Store','Address','Zipcode','City','Itemtype', 'Chaincode', 'Containercode', 'SalesVolume', 'UnitPrice', 'Sales'] # Added for PE calculation card
    }

    # Choose columns based on the active card
    required_columns = card_specific_cols.get(active_card, common_cols)

    # Define the data types for efficient memory usage
    dtype_spec = {
        'FyWeek': 'string',
        'Fy': 'category',  # Add data type for 'Fy' if it's used
        'Itemtype': 'category',
        'Chaincode': 'category',
        'State': 'category',
        "Store": "category", 
        'Containercode': 'category',
        "Address": "string",
        "Zipcode": "float",
        "City": "category", 
        'SalesVolume': 'float',
        'UnitPrice': 'float',
        'Sales': 'float'
    }

    # Read only the necessary columns
    # st.write(required_columns)
    ddf = dd.read_csv("fy21-24.csv", usecols=required_columns, dtype=dtype_spec)
    df = ddf.compute()

    # st.write("+++++++++++++++++++++++")

    if active_card in ['card1','card2', 'card3',]:
        df = df.groupby(['FyWeek', 'Fy', 'Chaincode', 'Store', 'Address', 'Zipcode', 'City', 'State', 'Containercode', 'Itemtype'], observed=True).agg({
        'SalesVolume': 'sum',
        'UnitPrice': 'mean',
        'Sales': 'sum'
        }).reset_index()
        df[['FY', 'Week']] = df['FyWeek'].str.split(' Week ', expand=True)
        df['Week'] = df['Week'].astype(int)  # Convert 'Week' to int
        df['Year'] = df['FY'].str[2:].astype(int)  # Extract year part and convert to int
        df['Dt'] = date_from_week(df['Year'], df['Week'])
    # Add the region column based on state
    df['Region'] = df['State'].map(state_to_region)

    return df
    
# Display logo
st.image("bonnie.png", width=150)  # Adjust width as needed

# Display title
# st.title("Price vs. Sales Volume Tracker Dashboard")


#  Initialize session state for storing which card was clicked and item type
if 'active_card' not in st.session_state:
    st.session_state['active_card'] = None
if 'selected_item_type' not in st.session_state:
    st.session_state['selected_item_type'] = 'CORE'  # Set default to 'CORE'

if 'selected_feature' not in st.session_state:
    st.session_state['selected_feature'] = 'Chaincode'  # Default to 'Chain Code'

# Card selection buttons with logic to reset session state on switch
col1, col3 = st.columns(2)
with col1:
    if st.button("Sales Volume Trend"):
        st.session_state['active_card'] = 'card1'
        # Reset other selections when switching cards
        st.session_state['selected_state'] = None
        st.session_state['selected_chaincode'] = None
        st.session_state['selected_itemtype'] = None
        st.session_state['selected_containercode'] = None

# with col2:
#     if st.button("Sales Volume vs Median Unit Price Trend"):
#         st.session_state['active_card'] = 'card2'
#         # Reset selections when switching cards
#         st.session_state['selected_state'] = None
#         st.session_state['selected_chaincode'] = None
#         st.session_state['selected_itemtype'] = None
#         st.session_state['selected_containercode'] = None

with col3:
    if st.button("Price Elasticity Coefficient Trend YoY"):
        st.session_state['active_card'] = 'card3'
        # Reset selections when switching cards
        st.session_state['selected_state'] = None
        st.session_state['selected_chaincode'] = None
        st.session_state['selected_itemtype'] = None
        st.session_state['selected_containercode'] = None

# Load data for the current card
start_time = time.time()
df = load_data(st.session_state['active_card'])
time_taken = time.time() - start_time
st.write(f"Data loaded in {time_taken:.2f} seconds")


############################################ CARD #1 ####################################################
if st.session_state['active_card'] == 'card1':
    # Step 1: Sales Volume vs FyWeek for the whole dataset (no filter)
    st.subheader("Total Sales Volume by Fiscal Week")
    df['FY_Week'] = df['FY'].astype(str) + '_' + df['Week'].astype(str)
    # Split FY_Week again for correct sorting
    if not df.empty and 'FY_Week' in df.columns:
        total_sales_df = df.groupby('FY_Week', observed=True)['SalesVolume'].sum().reset_index()
        total_sales_df[['FY', 'Week']] = total_sales_df['FY_Week'].str.split('_', expand=True)
        total_sales_df['Week'] = total_sales_df['Week'].astype(int)
        total_sales_df = total_sales_df.sort_values(by=['FY', 'Week'])
        
        # Create a line chart using Plotly
        fig = px.line(total_sales_df, x='FY_Week', y='SalesVolume',
                      labels={'SalesVolume': 'Sales Volume', 'FY_Week': 'Fiscal Week'})
        st.plotly_chart(fig)

    # Step 2: Top 3 states based on sales volume as buttons/cards
    top_states = df.groupby('State', observed=True)['SalesVolume'].sum().nlargest(3).index
    st.write("### Top 3 Selling States in the last 4 years (drill down by state)")
    col1, col2, col3 = st.columns(3)
    if len(top_states) > 0 and col1.button(top_states[0]):
        st.session_state['selected_state'] = top_states[0]
    if len(top_states) > 1 and col2.button(top_states[1]):
        st.session_state['selected_state'] = top_states[1]
    if len(top_states) > 2 and col3.button(top_states[2]):
        st.session_state['selected_state'] = top_states[2]

    # If a state is selected, show the corresponding plot
    if 'selected_state' in st.session_state and st.session_state['selected_state']:
        selected_state = st.session_state['selected_state']

        # Step 3: Sales volume vs FyWeek for the selected state
        st.subheader(f"Sales Volume by Fiscal Week for {selected_state} (drill down by Chaincode) ")
        state_sales_df = df[df['State'] == selected_state].groupby('FY_Week', observed=True)['SalesVolume'].sum().reset_index()

        if not state_sales_df.empty and 'FY_Week' in state_sales_df.columns:
            state_sales_df[['FY', 'Week']] = state_sales_df['FY_Week'].str.split('_', expand=True)
            state_sales_df['Week'] = state_sales_df['Week'].astype(int)
            state_sales_df = state_sales_df.sort_values(by=['FY', 'Week'])

            fig = px.line(state_sales_df, x='FY_Week', y='SalesVolume',
                          labels={'SalesVolume': 'Sales Volume', 'FY_Week': 'Fiscal Week'})
            st.plotly_chart(fig)

        # Step 4: Top 3 chaincodes based on sales volume as buttons/cards
        top_chaincodes = df[df['State'] == selected_state].groupby('Chaincode', observed=True)['SalesVolume'].sum().nlargest(3).index
        st.write(f"### Top 3 selling Chaincode in {selected_state}:")

        # Add a check to ensure top_chaincodes has values before accessing
        col1, col2, col3 = st.columns(3)
        if len(top_chaincodes) > 0 and col1.button(top_chaincodes[0]):
            st.session_state['selected_chaincode'] = top_chaincodes[0]
        if len(top_chaincodes) > 1 and col2.button(top_chaincodes[1]):
            st.session_state['selected_chaincode'] = top_chaincodes[1]
        if len(top_chaincodes) > 2 and col3.button(top_chaincodes[2]):
            st.session_state['selected_chaincode'] = top_chaincodes[2]

        # If a chaincode is selected, show the corresponding plot
        if 'selected_chaincode' in st.session_state:
            selected_chaincode = st.session_state['selected_chaincode']

            # Step 5: Sales volume vs FyWeek for the selected chaincode in the selected state
            st.subheader(f"Sales Volume by Fiscal Week for {selected_chaincode} in {selected_state}")
            chain_sales_df = df[(df['State'] == selected_state) & (df['Chaincode'] == selected_chaincode)].groupby('FY_Week', observed=True)['SalesVolume'].sum().reset_index()

            if not chain_sales_df.empty and 'FY_Week' in chain_sales_df.columns:
                chain_sales_df[['FY', 'Week']] = chain_sales_df['FY_Week'].str.split('_', expand=True)
                chain_sales_df['Week'] = chain_sales_df['Week'].astype(int)
                chain_sales_df = chain_sales_df.sort_values(by=['FY', 'Week'])

                fig = px.line(chain_sales_df, x='FY_Week', y='SalesVolume',
                              # title=f'Sales Volume vs Fiscal Week in {selected_chaincode}, {selected_state}',
                              labels={'SalesVolume': 'Sales Volume', 'FY_Week': 'Fiscal Week'})
                st.plotly_chart(fig)

            # Step 6: Top 3 itemtypes based on sales volume as buttons/cards
            top_itemtypes = df[(df['State'] == selected_state) & (df['Chaincode'] == selected_chaincode)].groupby('Itemtype', observed=True)['SalesVolume'].sum().nlargest(3).index
            st.write(f"### Top Item Type in {selected_chaincode}, {selected_state} (drill down by ItemType) :")

            col1, col2, col3 = st.columns(3)
            if len(top_itemtypes) > 0 and col1.button(top_itemtypes[0]):
                st.session_state['selected_itemtype'] = top_itemtypes[0]
            if len(top_itemtypes) > 1 and col2.button(top_itemtypes[1]):
                st.session_state['selected_itemtype'] = top_itemtypes[1]
            if len(top_itemtypes) > 2 and col3.button(top_itemtypes[2]):
                st.session_state['selected_itemtype'] = top_itemtypes[2]

            # If an itemtype is selected, show the corresponding dual-axis plot for Sales Volume & Unit Price
            if 'selected_itemtype' in st.session_state:
                selected_itemtype = st.session_state['selected_itemtype']

                # Step 7: Dual-axis plot for Sales volume and UnitPrice vs FyWeek for the selected itemtype
                # st.subheader(f"Sales Volume & Unit Price vs Fiscal Week for {selected_itemtype} in {selected_chaincode}, {selected_state}")
                item_sales_df = df[(df['State'] == selected_state) & (df['Chaincode'] == selected_chaincode) & (df['Itemtype'] == selected_itemtype)].groupby('FY_Week', observed=True).agg({
                    'SalesVolume': 'sum',
                    'UnitPrice': 'mean'
                }).reset_index()
                if not item_sales_df.empty and 'FY_Week' in item_sales_df.columns:
                    item_sales_df[['FY', 'Week']] = item_sales_df['FY_Week'].str.split('_', expand=True)
                    item_sales_df['Week'] = item_sales_df['Week'].astype(int)
                    item_sales_df = item_sales_df.sort_values(by=['FY', 'Week'])

                    # Dual-axis plot using Plotly Graph Objects
                    fig = go.Figure()

                    # Add SalesVolume trace
                    fig.add_trace(go.Scatter(
                        x=item_sales_df['FY_Week'],
                        y=item_sales_df['SalesVolume'],
                        mode='lines+markers',
                        name='SalesVolume',
                        line=dict(color='blue'),
                        hovertemplate='SalesVolume: %{y}<br>Week-Year: %{x}'
                    ))

                    # Add UnitPrice trace with secondary Y-axis
                    fig.add_trace(go.Scatter(
                        x=item_sales_df['FY_Week'],
                        y=item_sales_df['UnitPrice'],
                        mode='lines+markers',
                        name='UnitPrice',
                        line=dict(color='green'),
                        yaxis='y2',
                        hovertemplate='UnitPrice: %{y}<br>Week-Year: %{x}'
                    ))

                    # Update layout for dual axes
                    fig.update_layout(
                        title=f"Sales Volume vs Unit Price by Fiscal Week for {selected_itemtype}, {selected_chaincode}, {selected_state}",
                        xaxis_title='Fiscal Week',
                        yaxis_title='Sales Volume',
                        yaxis2=dict(title='Unit Price', overlaying='y', side='right'),
                        legend=dict(x=0.9, y=1.15),
                        hovermode="x unified",  # Show both values in a tooltip
                        height=600,
                        margin=dict(l=50, r=50, t=50, b=50)
                    )

                    # Rotate X-axis labels
                    fig.update_xaxes(tickangle=90)

                    # Display the Plotly figure in Streamlit
                    st.plotly_chart(fig, use_container_width=True)
                    # Step 8: Display Top/Bottom Container Codes and Stores
                    st.subheader("Top & Bottom 3 Container Codes and Stores")

                    # Get top and bottom 3 container codes based on SalesVolume
                    top_containercodes = df[(df['State'] == selected_state) & (df['Chaincode'] == selected_chaincode) & (df['Itemtype'] == selected_itemtype)].groupby('Containercode', observed=True)['SalesVolume'].sum().nlargest(3).reset_index()
                    bottom_containercodes = df[(df['State'] == selected_state) & (df['Chaincode'] == selected_chaincode) & (df['Itemtype'] == selected_itemtype)].groupby('Containercode', observed=True)['SalesVolume'].sum().nsmallest(3).reset_index()

                    # Get top and bottom 3 stores based on SalesVolume
                    top_stores = df[(df['State'] == selected_state) & (df['Chaincode'] == selected_chaincode) & (df['Itemtype'] == selected_itemtype)].groupby('Store', observed=True)['SalesVolume'].sum().nlargest(3).reset_index()
                    bottom_stores = df[(df['State'] == selected_state) & (df['Chaincode'] == selected_chaincode) & (df['Itemtype'] == selected_itemtype)].groupby('Store', observed=True)['SalesVolume'].sum().nsmallest(3).reset_index()

                    # Display top and bottom container codes side by side
                    st.write("### Container Codes:")
                    col1, col2 = st.columns(2)
                    with col1:
                        st.write("#### Top 3 Container Codes")
                        st.dataframe(top_containercodes)
                    with col2:
                        st.write("#### Bottom 3 Container Codes")
                        st.dataframe(bottom_containercodes)

                    # Display top and bottom stores side by side
                    st.write("### Stores:")
                    col3, col4 = st.columns(2)
                    with col3:
                        st.write("#### Top 3 Stores")
                        st.dataframe(top_stores)
                    with col4:
                        st.write("#### Bottom 3 Stores")
                        st.dataframe(bottom_stores)
##########################################################################################################


########################################### CARD #2 ####################################################
# if st.session_state['active_card'] == 'card2':
#     # Identify the top 10 Itemtypes based on total SalesVolume
#     top_10_itemtypes = df.groupby('Itemtype')['SalesVolume'].sum().nlargest(10).index

#     # Filter the DataFrame to include only the top 10 Itemtypes
#     df = df[df['Itemtype'].isin(top_10_itemtypes)]
#     # Dropdown to select item type (using session_state)
#     st.session_state['selected_item_type'] = st.selectbox(
#         'Select Item Type', df['Itemtype'].unique(),
#         index=list(df['Itemtype'].unique()).index(st.session_state['selected_item_type']))

#     # Dropdown to select the grouping category (container code, chain code, or state)
#     group_by_option = st.selectbox('Group by', ['Containercode', 'Chaincode', 'State','Region'])

#     # Multi-select checkbox to select multiple years
#     selected_years = st.multiselect('Select Year(s)', [2021, 2022, 2023, 2024], default=[2021])

#     st.subheader(f"Sales Volume & Unit Price Correlation for {group_by_option} in {', '.join(map(str, selected_years))}")

#     # Convert 'Dt' column to datetime
#     df['Dt'] = pd.to_datetime(df['Dt'], errors='coerce')
#     df['Promo'] = np.where(df['Dt'].dt.month.astype(str).isin(['3', '4', '5', '6']), 'Promo', 'NoPromo')
#     df["Promo"] = df["Promo"].astype("category")

#     # Filter the dataframe based on the selected item type and selected years
#     filtered_df = df[(df['Itemtype'] == st.session_state['selected_item_type']) & (df['Dt'].dt.year.isin(selected_years))]

#     # Find the top 3 values based on total SalesVolume in the selected grouping category
#     top_3_values = filtered_df.groupby(group_by_option, observed=True)['SalesVolume'].sum().nlargest(3).index

#     # Filter the data for only the top 3 values
#     top_group_data = filtered_df[filtered_df[group_by_option].isin(top_3_values)]
    
#     # Aggregate data
#     agg_df = top_group_data.groupby([group_by_option, 'Year', 'Week', 'Dt'], observed=True).agg({
#         'SalesVolume': 'sum',
#         'UnitPrice': 'mean'
#     }).reset_index()

#     # Create a new column 'week-year' for X-axis labels
#     agg_df['week-year'] = agg_df['Dt'].dt.strftime('%U-%Y')

#     # Loop through the top 3 values and create separate plots using Plotly
#     for value in top_3_values:
#         value_data = agg_df[agg_df[group_by_option] == value]
#         # Assuming you have 'value_data' from your previous code
#         mean_sales_volume = value_data['SalesVolume'].mean()
#         mean_unit_price = value_data['UnitPrice'].mean()

#         # Create a Plotly figure
#         fig = go.Figure()

#         # Add SalesVolume trace
#         fig.add_trace(go.Scatter(
#             x=value_data['week-year'],
#             y=value_data['SalesVolume'],
#             mode='lines+markers',
#             name='SalesVolume',
#             line=dict(color='blue'),
#             hovertemplate='SalesVolume: %{y}<br>Week-Year: %{x}'
#         ))

#         # Add UnitPrice trace on a secondary Y-axis
#         fig.add_trace(go.Scatter(
#             x=value_data['week-year'],
#             y=value_data['UnitPrice'],
#             mode='lines+markers',
#             name='UnitPrice',
#             line=dict(color='green'),
#             yaxis='y2',
#             hovertemplate='UnitPrice: %{y}<br>Week-Year: %{x}'
#         ))
#         # Add mean line for SalesVolume
#         fig.add_shape(type="line",
#                     x0=value_data['week-year'].min(), x1=value_data['week-year'].max(),
#                     y0=mean_sales_volume, y1=mean_sales_volume,
#                     line=dict(color="blue", width=2, dash="dash"),
#                     xref='x', yref='y')

#         # Add mean line for UnitPrice (on secondary Y-axis)
#         fig.add_shape(type="line",
#                     x0=value_data['week-year'].min(), x1=value_data['week-year'].max(),
#                     y0=mean_unit_price, y1=mean_unit_price,
#                     line=dict(color="green", width=2, dash="dash"),
#                     xref='x', yref='y2')

#         # Update layout for dual axes
#         fig.update_layout(
#             template='plotly_white',
#             title=f"SalesVolume and UnitPrice - {value} ({group_by_option})",
#             xaxis_title='Week-Year',
#             yaxis_title='Sales Volume',
#             yaxis2=dict(title='UnitPrice', overlaying='y', side='right'),
#             legend=dict(x=0.9, y=1.15),
#             hovermode="x unified",  # Show both values in a tooltip
#             height=600,
#             margin=dict(l=50, r=50, t=50, b=50)
#         )

#         # Rotate X-axis labels
#         fig.update_xaxes(tickangle=90)

#         # Display the Plotly figure in Streamlit
#         st.plotly_chart(fig, use_container_width=True)

################################
if st.session_state['active_card'] == 'card3':
    # Dropdown for selecting the item type
    item_type_options = df['Itemtype'].unique()
    selected_item_type = st.selectbox("Select Item Type", item_type_options)

    # Dropdown for selecting the region (multiple selection allowed)
    region_options = df['Region'].dropna().unique()
    selected_regions = st.multiselect("Select Region(s)", region_options, default=region_options)

    # Filter data based on selected item type and selected regions
    filtered_df = df[(df['Itemtype'] == selected_item_type) & (df['Region'].isin(selected_regions))]

    # Group by Year, Region, Itemtype and Promo, and aggregate SalesVolume and UnitPrice
    agg_df = filtered_df.groupby(['Fy', 'Region', 'Itemtype',]).agg({
        'SalesVolume': 'sum',
        'UnitPrice': 'mean'
    }).reset_index()

    # Sort values by Region, Itemtype, Fy, and Promo for YOY calculation
    agg_df = agg_df.sort_values(by=['Region', 'Itemtype', 'Fy',])

    # Calculate YOY percentage changes in Sales Volume and Unit Price
    agg_df['SalesVolume_pct_change'] = agg_df.groupby(['Region', 'Itemtype',])['SalesVolume'].pct_change().round(3) * 100
    agg_df['UnitPrice_pct_change'] = agg_df.groupby(['Region', 'Itemtype', ])['UnitPrice'].pct_change().round(3) * 100

    # Calculate Price Elasticity Coefficient (PE)
    agg_df['PE_Coeff'] = (agg_df['SalesVolume_pct_change'] / agg_df['UnitPrice_pct_change']).round(2)

    # Exclude FY 2025 but keep FY 2021 even with NaN values
    agg_df_filtered = agg_df[agg_df['Fy'] != 'FY 2025']

    # Drop rows where PE_Coeff is NaN (optional)
    agg_df_filtered = agg_df_filtered.dropna(subset=['PE_Coeff'])
    agg_df_filtered = agg_df_filtered.rename(columns={
    'SalesVolume_pct_change': 'SlVol%change',
    'UnitPrice_pct_change': 'UnPr%change',
    })
    agg_df_filtered = agg_df_filtered.reset_index(drop=True)
    st.dataframe(agg_df_filtered)
    st.write(agg_df_filtered.shape)
    # Extract values for the current and previous years from row 1 and row 2 of the dataframe
    current_year_row = agg_df_filtered.iloc[1]  # Row 1 - Current Year
    previous_year_row = agg_df_filtered.iloc[0]  # Row 2 - Previous Year

    # Extract values for Unit Price and Sales Volume
    unit_price_current_year = current_year_row['UnitPrice']
    unit_price_previous_year = previous_year_row['UnitPrice']
    sales_volume_current_year = current_year_row['SalesVolume']
    sales_volume_previous_year = previous_year_row['SalesVolume']

    # Calculate percentage changes for Unit Price and Sales Volume
    unit_price_pct = ((unit_price_current_year - unit_price_previous_year) / unit_price_previous_year) * 100
    sales_volume_pct = ((sales_volume_current_year - sales_volume_previous_year) / sales_volume_previous_year) * 100

    # Calculate PE Coefficient
    pe_coeff = sales_volume_pct / unit_price_pct

    st.markdown(f'''### Calculations for Price Elasticity Coefficient''')
    st.latex(rf"""
    \text{{Unit Price \% Change}} = \frac{{{unit_price_current_year:.2f} - {unit_price_previous_year:.2f}}}{{{unit_price_previous_year:.2f}}} \times 100 = {unit_price_pct:.2f}\%
    """)

    # Sales Volume % Change
    st.latex(rf"""
    \text{{Sales Volume \% Change}} = \frac{{{sales_volume_current_year:.2f} - {sales_volume_previous_year:.2f}}}{{{sales_volume_previous_year:.2f}}} \times 100 = {sales_volume_pct:.2f}\%
    """)

    # PE Coefficient
    st.latex(rf"""
    \text{{PE Coefficient}} = \frac{{{sales_volume_pct:.2f}}}{{{unit_price_pct:.2f}}} = {pe_coeff:.2f}
    """)

    # Explanation for PE Coefficient Conditions
    st.markdown(f"""
    ### Interpretation of Price Elasticity (PE) Coefficient:
    The Price Elasticity (PE) coefficient reflects how sensitive sales volume is to changes in unit price.

    - If the **PE coefficient is positive**:
    1. When the price increases, sales volume increases.
    2. When the price decreases, sales volume decreases.
    
    - If the **PE coefficient is negative**:
    1. When the price increases, sales volume decreases.
    2. When the price decreases, sales volume increases.
    
    """)

    # Dynamic analysis based on the calculated PE coefficient and signs of changes
    if unit_price_pct > 0 and sales_volume_pct > 0:
        st.warning(f"""
        Both unit price and sales volume increased (refer first and second row of the table). The PE coefficient of **{pe_coeff:.2f}** indicates that for every 1% increase in unit price, sales volume increased by approximately **{pe_coeff:.2f}%**.
        """)
    elif unit_price_pct < 0 and sales_volume_pct < 0:
        st.warning(f"""
        Both unit price and sales volume decreased (refer first and second row of the table). The PE coefficient of **{pe_coeff:.2f}** suggests that for every 1% decrease in unit price, sales volume decreased by approximately **{pe_coeff:.2f}%**.
        """)
    elif unit_price_pct > 0 and sales_volume_pct < 0:
        st.warning(f"""
        The unit price increased while sales volume decreased (refer first and second row of the table). The negative PE coefficient of **{pe_coeff:.2f}** means that for every 1% increase in unit price, sales volume fell by approximately **{abs(pe_coeff):.2f}%**.
        """)
    elif unit_price_pct < 0 and sales_volume_pct > 0:
        st.warning(f"""
        The unit price decreased while sales volume increased (refer first and second row of the table). The negative PE coefficient of **{pe_coeff:.2f}** implies that for every 1% decrease in unit price, sales volume increased by approximately **{abs(pe_coeff):.2f}%**.
        """)
    # Plot the PE Coefficient with Plotly
    fig = px.line(
        agg_df_filtered, 
        x='Fy', 
        y='PE_Coeff',  # Differentiate between Promo and NoPromo
        color='Region',  # Differentiate lines by Region
        title=f"Price Elasticity Coefficient (PE) by Year for {selected_item_type}",
        labels={'Fy': 'Fiscal Year', 'PE_Coeff': 'Price Elasticity Coefficient'},
        markers=True
    )

    # Customize layout and show plot
    fig.update_layout(
        height=600,
        width=1000,
    )

    st.plotly_chart(fig, use_container_width=True)

    #################### CARD-3 MONTHLY IMPLEMENTATION #########################
    # Ensure 'Dt' column is in datetime format
    df['Dt'] = pd.to_datetime(df['Dt'])

    # Extract fiscal year and month from 'Dt' column
    df['FY'] = df['Dt'].dt.year.astype(str)
    df['Month'] = df['Dt'].dt.month.astype(str)

    # Create FY_Month column
    df['FY_Month'] = df['FY'] + '_' + df['Month']

    # Filter data based on selected item type and selected regions
    filtered_df = df[(df['Itemtype'] == selected_item_type) & (df['Region'].isin(selected_regions))]

    # Group by Year, Region, Itemtype and aggregate SalesVolume and UnitPrice
    agg_df = filtered_df.groupby(['FY_Month', 'Region', 'Itemtype']).agg({
        'SalesVolume': 'sum',
        'UnitPrice': 'mean'
    }).reset_index()

    # Split FY_Month again for correct sorting
    agg_df[['FY', 'Month']] = agg_df['FY_Month'].str.split('_', expand=True)
    agg_df['Month'] = agg_df['Month'].astype(int)
    agg_df['FY'] = agg_df['FY'].astype(int)

    # Combine FY and Month back into a datetime-like format for proper sorting
    agg_df['FY_Month_dt'] = pd.to_datetime(agg_df['FY'].astype(str) + agg_df['Month'].astype(str).str.zfill(2), format='%Y%m')

    # Sort values by Region, Itemtype, and FY_Month_dt
    agg_df = agg_df.sort_values(by=['Region', 'Itemtype', 'FY_Month_dt'])

    # Calculate YOY percentage changes in Sales Volume and Unit Price
    agg_df['SalesVolume_pct_change'] = agg_df.groupby(['Region', 'Itemtype'])['SalesVolume'].pct_change().round(3) * 100
    agg_df['UnitPrice_pct_change'] = agg_df.groupby(['Region', 'Itemtype'])['UnitPrice'].pct_change().round(3) * 100

    # Calculate Price Elasticity Coefficient (PE)
    agg_df['PE_Coeff'] = (agg_df['SalesVolume_pct_change'] / agg_df['UnitPrice_pct_change']).round(2)

    # Exclude FY 2021 and FY 2025
    agg_df_filtered = agg_df[~agg_df['FY'].astype(str).str.contains('2020|2021|2025')]

    # Drop rows where PE_Coeff is NaN (optional)
    agg_df_filtered = agg_df_filtered.dropna(subset=['PE_Coeff'])
    agg_df_filtered = agg_df_filtered[(agg_df_filtered['PE_Coeff'] < 1000) & (agg_df_filtered['PE_Coeff'] > -1000)]

    # Plot the PE Coefficient with Plotly
    fig = go.Figure()

    # Iterate through each selected region and plot separately
    for region in selected_regions:
        # Filter the DataFrame for the current region
        region_df = agg_df_filtered[agg_df_filtered['Region'] == region]
        
        # Add a line trace for the region
        fig.add_trace(go.Scatter(
            x=region_df['FY_Month_dt'],  # Use the datetime-like column for correct sorting
            y=region_df['PE_Coeff'], 
            mode='lines+markers',
            name=region,  # Set the name to the region to appear in the legend
            line=dict(width=2),
            marker=dict(size=6),
        ))

    # Customize layout
    fig.update_layout(
        title=f"Price Elasticity Coefficient (PE) by Year-Month for {selected_item_type}",
        xaxis_title="Fiscal Year_Month",
        yaxis_title="Price Elasticity Coefficient (PE)",
        height=600,
        width=1000,
        legend_title="Region",
        xaxis=dict(
            tickformat='%Y-%m',  # Format X-axis ticks as Year-Month
        )
    )

    # Show the plot in Streamlit
    st.plotly_chart(fig, use_container_width=True)