Spaces:
Running
on
Zero
Running
on
Zero
test no HF_TOKEN solution
Browse files
app.py
CHANGED
@@ -1,10 +1,8 @@
|
|
|
|
1 |
from typing import Tuple
|
2 |
|
3 |
-
import os
|
4 |
-
import requests
|
5 |
-
import random
|
6 |
-
import numpy as np
|
7 |
import gradio as gr
|
|
|
8 |
import spaces
|
9 |
import torch
|
10 |
from PIL import Image, ImageFilter
|
@@ -23,8 +21,7 @@ MAX_SEED = np.iinfo(np.int32).max
|
|
23 |
IMAGE_SIZE = 1024
|
24 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
25 |
|
26 |
-
|
27 |
-
client = Client("SkalskiP/florence-sam-masking", hf_token=HF_TOKEN)
|
28 |
|
29 |
|
30 |
def remove_background(image: Image.Image, threshold: int = 50) -> Image.Image:
|
@@ -42,34 +39,34 @@ def remove_background(image: Image.Image, threshold: int = 50) -> Image.Image:
|
|
42 |
return image
|
43 |
|
44 |
|
45 |
-
EXAMPLES = [
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
]
|
73 |
|
74 |
pipe = FluxInpaintPipeline.from_pretrained(
|
75 |
"black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE)
|
@@ -143,16 +140,16 @@ def process(
|
|
143 |
|
144 |
mask = mask.filter(ImageFilter.GaussianBlur(radius=5))
|
145 |
width, height = resize_image_dimensions(original_resolution_wh=image.size)
|
146 |
-
|
147 |
-
|
148 |
|
149 |
if randomize_seed_checkbox:
|
150 |
seed_slicer = random.randint(0, MAX_SEED)
|
151 |
generator = torch.Generator().manual_seed(seed_slicer)
|
152 |
result = pipe(
|
153 |
prompt=inpainting_prompt_text,
|
154 |
-
image=
|
155 |
-
mask_image=
|
156 |
width=width,
|
157 |
height=height,
|
158 |
strength=strength_slider,
|
@@ -160,7 +157,7 @@ def process(
|
|
160 |
num_inference_steps=num_inference_steps_slider
|
161 |
).images[0]
|
162 |
print('INFERENCE DONE')
|
163 |
-
return result,
|
164 |
|
165 |
|
166 |
with gr.Blocks() as demo:
|
@@ -232,26 +229,26 @@ with gr.Blocks() as demo:
|
|
232 |
with gr.Accordion("Debug", open=False):
|
233 |
output_mask_component = gr.Image(
|
234 |
type='pil', image_mode='RGB', label='Input mask', format="png")
|
235 |
-
with gr.Row():
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
|
256 |
submit_button_component.click(
|
257 |
fn=process,
|
|
|
1 |
+
import random
|
2 |
from typing import Tuple
|
3 |
|
|
|
|
|
|
|
|
|
4 |
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
import spaces
|
7 |
import torch
|
8 |
from PIL import Image, ImageFilter
|
|
|
21 |
IMAGE_SIZE = 1024
|
22 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
23 |
|
24 |
+
client = Client("SkalskiP/florence-sam-masking")
|
|
|
25 |
|
26 |
|
27 |
def remove_background(image: Image.Image, threshold: int = 50) -> Image.Image:
|
|
|
39 |
return image
|
40 |
|
41 |
|
42 |
+
# EXAMPLES = [
|
43 |
+
# [
|
44 |
+
# {
|
45 |
+
# "background": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-image.png", stream=True).raw),
|
46 |
+
# "layers": [remove_background(Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-mask-2.png", stream=True).raw))],
|
47 |
+
# "composite": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-composite-2.png", stream=True).raw),
|
48 |
+
# },
|
49 |
+
# "little lion",
|
50 |
+
# None,
|
51 |
+
# 42,
|
52 |
+
# False,
|
53 |
+
# 0.85,
|
54 |
+
# 30
|
55 |
+
# ],
|
56 |
+
# [
|
57 |
+
# {
|
58 |
+
# "background": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-image.png", stream=True).raw),
|
59 |
+
# "layers": [remove_background(Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-mask-3.png", stream=True).raw))],
|
60 |
+
# "composite": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-composite-3.png", stream=True).raw),
|
61 |
+
# },
|
62 |
+
# "tattoos",
|
63 |
+
# None,
|
64 |
+
# 42,
|
65 |
+
# False,
|
66 |
+
# 0.85,
|
67 |
+
# 30
|
68 |
+
# ]
|
69 |
+
# ]
|
70 |
|
71 |
pipe = FluxInpaintPipeline.from_pretrained(
|
72 |
"black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE)
|
|
|
140 |
|
141 |
mask = mask.filter(ImageFilter.GaussianBlur(radius=5))
|
142 |
width, height = resize_image_dimensions(original_resolution_wh=image.size)
|
143 |
+
image = image.resize((width, height), Image.LANCZOS)
|
144 |
+
mask = mask.resize((width, height), Image.LANCZOS)
|
145 |
|
146 |
if randomize_seed_checkbox:
|
147 |
seed_slicer = random.randint(0, MAX_SEED)
|
148 |
generator = torch.Generator().manual_seed(seed_slicer)
|
149 |
result = pipe(
|
150 |
prompt=inpainting_prompt_text,
|
151 |
+
image=image,
|
152 |
+
mask_image=mask,
|
153 |
width=width,
|
154 |
height=height,
|
155 |
strength=strength_slider,
|
|
|
157 |
num_inference_steps=num_inference_steps_slider
|
158 |
).images[0]
|
159 |
print('INFERENCE DONE')
|
160 |
+
return result, mask
|
161 |
|
162 |
|
163 |
with gr.Blocks() as demo:
|
|
|
229 |
with gr.Accordion("Debug", open=False):
|
230 |
output_mask_component = gr.Image(
|
231 |
type='pil', image_mode='RGB', label='Input mask', format="png")
|
232 |
+
# with gr.Row():
|
233 |
+
# gr.Examples(
|
234 |
+
# fn=process,
|
235 |
+
# examples=EXAMPLES,
|
236 |
+
# inputs=[
|
237 |
+
# input_image_editor_component,
|
238 |
+
# inpainting_prompt_text_component,
|
239 |
+
# masking_prompt_text_component,
|
240 |
+
# seed_slicer_component,
|
241 |
+
# randomize_seed_checkbox_component,
|
242 |
+
# strength_slider_component,
|
243 |
+
# num_inference_steps_slider_component
|
244 |
+
# ],
|
245 |
+
# outputs=[
|
246 |
+
# output_image_component,
|
247 |
+
# output_mask_component
|
248 |
+
# ],
|
249 |
+
# run_on_click=True,
|
250 |
+
# cache_examples=True
|
251 |
+
# )
|
252 |
|
253 |
submit_button_component.click(
|
254 |
fn=process,
|