File size: 5,310 Bytes
06541ee
 
 
 
 
 
 
 
34cb512
 
 
 
 
 
 
 
06541ee
 
 
 
 
 
 
 
 
34cb512
 
06541ee
34cb512
06541ee
 
 
 
 
34cb512
 
06541ee
 
 
34cb512
 
06541ee
 
 
 
34cb512
 
 
 
 
 
 
06541ee
 
34cb512
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06541ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34cb512
06541ee
34cb512
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06541ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34cb512
 
06541ee
 
 
 
 
 
 
 
 
 
 
 
 
34cb512
 
06541ee
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
from typing import Tuple

import gradio as gr
import numpy as np
import supervision as sv
from inference import get_model

MARKDOWN = """
<h1 style='text-align: center'>YOLO-ARENA 🏟️</h1>

Welcome to YOLO-Arena! This demo showcases the performance of various YOLO models:

- YOLOv8
- YOLOv9
- YOLOv10
- YOLO-NAS

Powered by Roboflow [Inference](https://github.com/roboflow/inference) and 
[Supervision](https://github.com/roboflow/supervision).
"""

IMAGE_EXAMPLES = [
    ['https://media.roboflow.com/dog.jpeg', 0.3]
]

YOLO_V8_MODEL = get_model(model_id="yolov8m-640")
YOLO_NAS_MODEL = get_model(model_id="coco/15")
YOLO_V9_MODEL = get_model(model_id="coco/17")
YOLO_V10_MODEL = get_model(model_id="coco/22")

LABEL_ANNOTATORS = sv.LabelAnnotator(text_color=sv.Color.black())
BOUNDING_BOX_ANNOTATORS = sv.BoundingBoxAnnotator()


def detect_and_annotate(
    model,
    input_image: np.ndarray,
    confidence_threshold: float,
    iou_threshold: float
) -> np.ndarray:
    result = model.infer(
        input_image,
        confidence=confidence_threshold,
        iou_threshold=iou_threshold
    )[0]
    detections = sv.Detections.from_inference(result)
    annotated_image = input_image.copy()
    annotated_image = BOUNDING_BOX_ANNOTATORS.annotate(
        scene=annotated_image, detections=detections)
    annotated_image = LABEL_ANNOTATORS.annotate(
        scene=annotated_image, detections=detections)
    return annotated_image


def process_image(
    input_image: np.ndarray,
    confidence_threshold: float,
    iou_threshold: float
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
    yolo_v8_annotated_image = detect_and_annotate(
        YOLO_V8_MODEL, input_image, confidence_threshold, iou_threshold)
    yolo_nas_annotated_image = detect_and_annotate(
        YOLO_NAS_MODEL, input_image, confidence_threshold, iou_threshold)
    yolo_v9_annotated_image = detect_and_annotate(
        YOLO_V9_MODEL, input_image, confidence_threshold, iou_threshold)
    yolo_10_annotated_image = detect_and_annotate(
        YOLO_V10_MODEL, input_image, confidence_threshold, iou_threshold)

    return (
        yolo_v8_annotated_image,
        yolo_nas_annotated_image,
        yolo_v9_annotated_image,
        yolo_10_annotated_image
    )


confidence_threshold_component = gr.Slider(
    minimum=0,
    maximum=1.0,
    value=0.3,
    step=0.01,
    label="Confidence Threshold",
    info=(
        "The confidence threshold for the YOLO model. Lower the threshold to "
        "reduce false negatives, enhancing the model's sensitivity to detect "
        "sought-after objects. Conversely, increase the threshold to minimize false "
        "positives, preventing the model from identifying objects it shouldn't."
    ))

iou_threshold_component = gr.Slider(
    minimum=0,
    maximum=1.0,
    value=0.5,
    step=0.01,
    label="IoU Threshold",
    info=(
        "The Intersection over Union (IoU) threshold for non-maximum suppression. "
        "Decrease the value to lessen the occurrence of overlapping bounding boxes, "
        "making the detection process stricter. On the other hand, increase the value "
        "to allow more overlapping bounding boxes, accommodating a broader range of "
        "detections."
    ))


with gr.Blocks() as demo:
    gr.Markdown(MARKDOWN)
    with gr.Accordion("Configuration", open=False):
        confidence_threshold_component.render()
        iou_threshold_component.render()
    with gr.Row():
        input_image_component = gr.Image(
            type='numpy',
            label='Input'
        )
        with gr.Column():
            with gr.Row():
                yolo_v8_output_image_component = gr.Image(
                    type='numpy',
                    label='YOLOv8m @ 640x640'
                )
                yolo_nas_output_image_component = gr.Image(
                    type='numpy',
                    label='YOLO-NAS M @ 640x640'
                )
            with gr.Row():
                yolo_v9_output_image_component = gr.Image(
                    type='numpy',
                    label='YOLOv9c @ 640x640'
                )
                yolo_v10_output_image_component = gr.Image(
                    type='numpy',
                    label='YOLOv10m @ 640x640'
                )
    submit_button_component = gr.Button(
        value='Submit',
        scale=1,
        variant='primary'
    )
    gr.Examples(
        fn=process_image,
        examples=IMAGE_EXAMPLES,
        inputs=[
            input_image_component,
            confidence_threshold_component,
            iou_threshold_component
        ],
        outputs=[
            yolo_v8_output_image_component,
            yolo_nas_output_image_component,
            yolo_v9_output_image_component,
            yolo_v10_output_image_component
        ]
    )

    submit_button_component.click(
        fn=process_image,
        inputs=[
            input_image_component,
            confidence_threshold_component,
            iou_threshold_component
        ],
        outputs=[
            yolo_v8_output_image_component,
            yolo_nas_output_image_component,
            yolo_v9_output_image_component,
            yolo_v10_output_image_component
        ]
    )

demo.launch(debug=False, show_error=True, max_threads=1)