Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 5,310 Bytes
06541ee 34cb512 06541ee 34cb512 06541ee 34cb512 06541ee 34cb512 06541ee 34cb512 06541ee 34cb512 06541ee 34cb512 06541ee 34cb512 06541ee 34cb512 06541ee 34cb512 06541ee 34cb512 06541ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
from typing import Tuple
import gradio as gr
import numpy as np
import supervision as sv
from inference import get_model
MARKDOWN = """
<h1 style='text-align: center'>YOLO-ARENA 🏟️</h1>
Welcome to YOLO-Arena! This demo showcases the performance of various YOLO models:
- YOLOv8
- YOLOv9
- YOLOv10
- YOLO-NAS
Powered by Roboflow [Inference](https://github.com/roboflow/inference) and
[Supervision](https://github.com/roboflow/supervision).
"""
IMAGE_EXAMPLES = [
['https://media.roboflow.com/dog.jpeg', 0.3]
]
YOLO_V8_MODEL = get_model(model_id="yolov8m-640")
YOLO_NAS_MODEL = get_model(model_id="coco/15")
YOLO_V9_MODEL = get_model(model_id="coco/17")
YOLO_V10_MODEL = get_model(model_id="coco/22")
LABEL_ANNOTATORS = sv.LabelAnnotator(text_color=sv.Color.black())
BOUNDING_BOX_ANNOTATORS = sv.BoundingBoxAnnotator()
def detect_and_annotate(
model,
input_image: np.ndarray,
confidence_threshold: float,
iou_threshold: float
) -> np.ndarray:
result = model.infer(
input_image,
confidence=confidence_threshold,
iou_threshold=iou_threshold
)[0]
detections = sv.Detections.from_inference(result)
annotated_image = input_image.copy()
annotated_image = BOUNDING_BOX_ANNOTATORS.annotate(
scene=annotated_image, detections=detections)
annotated_image = LABEL_ANNOTATORS.annotate(
scene=annotated_image, detections=detections)
return annotated_image
def process_image(
input_image: np.ndarray,
confidence_threshold: float,
iou_threshold: float
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
yolo_v8_annotated_image = detect_and_annotate(
YOLO_V8_MODEL, input_image, confidence_threshold, iou_threshold)
yolo_nas_annotated_image = detect_and_annotate(
YOLO_NAS_MODEL, input_image, confidence_threshold, iou_threshold)
yolo_v9_annotated_image = detect_and_annotate(
YOLO_V9_MODEL, input_image, confidence_threshold, iou_threshold)
yolo_10_annotated_image = detect_and_annotate(
YOLO_V10_MODEL, input_image, confidence_threshold, iou_threshold)
return (
yolo_v8_annotated_image,
yolo_nas_annotated_image,
yolo_v9_annotated_image,
yolo_10_annotated_image
)
confidence_threshold_component = gr.Slider(
minimum=0,
maximum=1.0,
value=0.3,
step=0.01,
label="Confidence Threshold",
info=(
"The confidence threshold for the YOLO model. Lower the threshold to "
"reduce false negatives, enhancing the model's sensitivity to detect "
"sought-after objects. Conversely, increase the threshold to minimize false "
"positives, preventing the model from identifying objects it shouldn't."
))
iou_threshold_component = gr.Slider(
minimum=0,
maximum=1.0,
value=0.5,
step=0.01,
label="IoU Threshold",
info=(
"The Intersection over Union (IoU) threshold for non-maximum suppression. "
"Decrease the value to lessen the occurrence of overlapping bounding boxes, "
"making the detection process stricter. On the other hand, increase the value "
"to allow more overlapping bounding boxes, accommodating a broader range of "
"detections."
))
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN)
with gr.Accordion("Configuration", open=False):
confidence_threshold_component.render()
iou_threshold_component.render()
with gr.Row():
input_image_component = gr.Image(
type='numpy',
label='Input'
)
with gr.Column():
with gr.Row():
yolo_v8_output_image_component = gr.Image(
type='numpy',
label='YOLOv8m @ 640x640'
)
yolo_nas_output_image_component = gr.Image(
type='numpy',
label='YOLO-NAS M @ 640x640'
)
with gr.Row():
yolo_v9_output_image_component = gr.Image(
type='numpy',
label='YOLOv9c @ 640x640'
)
yolo_v10_output_image_component = gr.Image(
type='numpy',
label='YOLOv10m @ 640x640'
)
submit_button_component = gr.Button(
value='Submit',
scale=1,
variant='primary'
)
gr.Examples(
fn=process_image,
examples=IMAGE_EXAMPLES,
inputs=[
input_image_component,
confidence_threshold_component,
iou_threshold_component
],
outputs=[
yolo_v8_output_image_component,
yolo_nas_output_image_component,
yolo_v9_output_image_component,
yolo_v10_output_image_component
]
)
submit_button_component.click(
fn=process_image,
inputs=[
input_image_component,
confidence_threshold_component,
iou_threshold_component
],
outputs=[
yolo_v8_output_image_component,
yolo_nas_output_image_component,
yolo_v9_output_image_component,
yolo_v10_output_image_component
]
)
demo.launch(debug=False, show_error=True, max_threads=1)
|