Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
allow to set different confidence thresholds per model
Browse files
app.py
CHANGED
@@ -52,9 +52,9 @@ Powered by Roboflow [Inference](https://github.com/roboflow/inference) and
|
|
52 |
"""
|
53 |
|
54 |
IMAGE_EXAMPLES = [
|
55 |
-
['https://media.roboflow.com/supervision/image-examples/people-walking.png', 0.
|
56 |
-
['https://media.roboflow.com/supervision/image-examples/vehicles.png', 0.
|
57 |
-
['https://media.roboflow.com/supervision/image-examples/basketball-1.png', 0.
|
58 |
]
|
59 |
|
60 |
YOLO_V8_MODEL = get_model(model_id="coco/8")
|
@@ -102,15 +102,17 @@ def detect_and_annotate(
|
|
102 |
|
103 |
def process_image(
|
104 |
input_image: np.ndarray,
|
105 |
-
|
|
|
|
|
106 |
iou_threshold: float
|
107 |
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
108 |
yolo_v8_annotated_image = detect_and_annotate(
|
109 |
-
YOLO_V8_MODEL, input_image,
|
110 |
yolo_v9_annotated_image = detect_and_annotate(
|
111 |
-
YOLO_V9_MODEL, input_image,
|
112 |
yolo_10_annotated_image = detect_and_annotate(
|
113 |
-
YOLO_V10_MODEL, input_image,
|
114 |
|
115 |
return (
|
116 |
yolo_v8_annotated_image,
|
@@ -119,12 +121,38 @@ def process_image(
|
|
119 |
)
|
120 |
|
121 |
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
minimum=0,
|
124 |
maximum=1.0,
|
125 |
value=0.3,
|
126 |
step=0.01,
|
127 |
-
label="Confidence Threshold",
|
128 |
info=(
|
129 |
"The confidence threshold for the YOLO model. Lower the threshold to "
|
130 |
"reduce false negatives, enhancing the model's sensitivity to detect "
|
@@ -150,7 +178,10 @@ iou_threshold_component = gr.Slider(
|
|
150 |
with gr.Blocks() as demo:
|
151 |
gr.Markdown(MARKDOWN)
|
152 |
with gr.Accordion("Configuration", open=False):
|
153 |
-
|
|
|
|
|
|
|
154 |
iou_threshold_component.render()
|
155 |
with gr.Row():
|
156 |
input_image_component = gr.Image(
|
@@ -180,7 +211,9 @@ with gr.Blocks() as demo:
|
|
180 |
examples=IMAGE_EXAMPLES,
|
181 |
inputs=[
|
182 |
input_image_component,
|
183 |
-
|
|
|
|
|
184 |
iou_threshold_component
|
185 |
],
|
186 |
outputs=[
|
@@ -194,7 +227,9 @@ with gr.Blocks() as demo:
|
|
194 |
fn=process_image,
|
195 |
inputs=[
|
196 |
input_image_component,
|
197 |
-
|
|
|
|
|
198 |
iou_threshold_component
|
199 |
],
|
200 |
outputs=[
|
|
|
52 |
"""
|
53 |
|
54 |
IMAGE_EXAMPLES = [
|
55 |
+
['https://media.roboflow.com/supervision/image-examples/people-walking.png', 0.3, 0.3, 0.1],
|
56 |
+
['https://media.roboflow.com/supervision/image-examples/vehicles.png', 0.3, 0.3, 0.1],
|
57 |
+
['https://media.roboflow.com/supervision/image-examples/basketball-1.png', 0.3, 0.3, 0.1],
|
58 |
]
|
59 |
|
60 |
YOLO_V8_MODEL = get_model(model_id="coco/8")
|
|
|
102 |
|
103 |
def process_image(
|
104 |
input_image: np.ndarray,
|
105 |
+
yolo_v8_confidence_threshold: float,
|
106 |
+
yolo_v9_confidence_threshold: float,
|
107 |
+
yolo_v10_confidence_threshold: float,
|
108 |
iou_threshold: float
|
109 |
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
110 |
yolo_v8_annotated_image = detect_and_annotate(
|
111 |
+
YOLO_V8_MODEL, input_image, yolo_v8_confidence_threshold, iou_threshold)
|
112 |
yolo_v9_annotated_image = detect_and_annotate(
|
113 |
+
YOLO_V9_MODEL, input_image, yolo_v9_confidence_threshold, iou_threshold)
|
114 |
yolo_10_annotated_image = detect_and_annotate(
|
115 |
+
YOLO_V10_MODEL, input_image, yolo_v10_confidence_threshold, iou_threshold)
|
116 |
|
117 |
return (
|
118 |
yolo_v8_annotated_image,
|
|
|
121 |
)
|
122 |
|
123 |
|
124 |
+
yolo_v8_confidence_threshold_component = gr.Slider(
|
125 |
+
minimum=0,
|
126 |
+
maximum=1.0,
|
127 |
+
value=0.3,
|
128 |
+
step=0.01,
|
129 |
+
label="YOLOv8 Confidence Threshold",
|
130 |
+
info=(
|
131 |
+
"The confidence threshold for the YOLO model. Lower the threshold to "
|
132 |
+
"reduce false negatives, enhancing the model's sensitivity to detect "
|
133 |
+
"sought-after objects. Conversely, increase the threshold to minimize false "
|
134 |
+
"positives, preventing the model from identifying objects it shouldn't."
|
135 |
+
))
|
136 |
+
|
137 |
+
yolo_v9_confidence_threshold_component = gr.Slider(
|
138 |
+
minimum=0,
|
139 |
+
maximum=1.0,
|
140 |
+
value=0.3,
|
141 |
+
step=0.01,
|
142 |
+
label="YOLOv9 Confidence Threshold",
|
143 |
+
info=(
|
144 |
+
"The confidence threshold for the YOLO model. Lower the threshold to "
|
145 |
+
"reduce false negatives, enhancing the model's sensitivity to detect "
|
146 |
+
"sought-after objects. Conversely, increase the threshold to minimize false "
|
147 |
+
"positives, preventing the model from identifying objects it shouldn't."
|
148 |
+
))
|
149 |
+
|
150 |
+
yolo_v10_confidence_threshold_component = gr.Slider(
|
151 |
minimum=0,
|
152 |
maximum=1.0,
|
153 |
value=0.3,
|
154 |
step=0.01,
|
155 |
+
label="YOLOv10 Confidence Threshold",
|
156 |
info=(
|
157 |
"The confidence threshold for the YOLO model. Lower the threshold to "
|
158 |
"reduce false negatives, enhancing the model's sensitivity to detect "
|
|
|
178 |
with gr.Blocks() as demo:
|
179 |
gr.Markdown(MARKDOWN)
|
180 |
with gr.Accordion("Configuration", open=False):
|
181 |
+
with gr.Row():
|
182 |
+
yolo_v8_confidence_threshold_component.render()
|
183 |
+
yolo_v9_confidence_threshold_component.render()
|
184 |
+
yolo_v10_confidence_threshold_component.render()
|
185 |
iou_threshold_component.render()
|
186 |
with gr.Row():
|
187 |
input_image_component = gr.Image(
|
|
|
211 |
examples=IMAGE_EXAMPLES,
|
212 |
inputs=[
|
213 |
input_image_component,
|
214 |
+
yolo_v8_confidence_threshold_component,
|
215 |
+
yolo_v9_confidence_threshold_component,
|
216 |
+
yolo_v10_confidence_threshold_component,
|
217 |
iou_threshold_component
|
218 |
],
|
219 |
outputs=[
|
|
|
227 |
fn=process_image,
|
228 |
inputs=[
|
229 |
input_image_component,
|
230 |
+
yolo_v8_confidence_threshold_component,
|
231 |
+
yolo_v9_confidence_threshold_component,
|
232 |
+
yolo_v10_confidence_threshold_component,
|
233 |
iou_threshold_component
|
234 |
],
|
235 |
outputs=[
|